因此,我使用以下代码用python创建了一个甜甜圈图(在此甜甜圈图recipe中得到启发):
def make_pie(sizes, text,colors,labels):
import matplotlib.pyplot as plt
import numpy as np
col = [[i/255. for i in c] for c in colors]
fig, ax = plt.subplots()
ax.axis('equal')
width = 0.35
kwargs = dict(colors=col, startangle=180)
outside, _ = ax.pie(sizes, radius=1, pctdistance=1-width/2,labels=labels,**kwargs)
plt.setp( outside, width=width, edgecolor='white')
kwargs = dict(size=20, fontweight='bold', va='center')
ax.text(0, 0, text, ha='center', **kwargs)
plt.show()
c1 = (226,33,7)
c2 = (60,121,189)
make_pie([257,90], "Gender (AR)",[c1,c2],['M','F'])
结果是:
我的问题是,现在我想要各自的百分比。为此,我只是添加了参数:
autopct='%1.1f%%'
像这样:
kwargs = dict(colors=col, startangle=180,autopct='%1.1f%%')
但这会导致以下错误:
Traceback (most recent call last):
File "draw.py", line 30, in <module>
make_pie([257,90], "Gender (AR)",[c1,c2],['M','F'])
File "draw.py", line 13, in make_pie
outside, _ = ax.pie(sizes, radius=1, pctdistance=1-width/2,labels=labels,**kwargs)
ValueError: too many values to unpack
那么,我在做什么错呢?
最佳答案
从文档字符串:
因此,如果要使用pie()
解压缩autopct
的结果,则需要3个值:
kwargs = dict(colors=col, startangle=180, autopct='%1.1f%%')
outside, _, _ = ax.pie(sizes, radius=1, pctdistance=1-width/2,
labels=labels,**kwargs)
或者,也许在不解压的情况下它会更健壮,因此无论是否使用
autopct
,它都可以工作:outside = ax.pie(sizes, radius=1, pctdistance=1-width/2,
labels=labels,**kwargs)[0]