我在android平台上使用openCV库。
我已经成功地从图像中检测到最大的矩形,但是由于我的应用程序将用于扫描,因此我也希望具有透 View 更改功能。
我知道如何应用PerspectiveTransform和warpPerspectiveTransform,但是为此,我将需要矩形的角作为源点。
鉴于我们拥有与Rect对象相关联的第一个角的坐标(左上角)和宽度/高度,这似乎很容易找到角,但是问题是,对于旋转的矩形(通常为boundingRect,但边不平行于轴),这些值是非常不同的。在这种情况下,它存储的值对应于另一个矩形,该矩形的边平行于轴并覆盖旋转的矩形,这使我无法检测到实际矩形的角。
我也想对这两种算法从图像中检测出一张纸进行比较。
我想问的是如果我们有一个Rect对象,如何获得该矩形的所有角?
提前致谢。
最佳答案
我很高兴回答我的问题!这很容易,但是当你刚开始的时候没有相关文档的时候就会发生。
我正在努力获取openCV的实现中未定义的通用矩形的角,因此几乎是不可能的。
我遵循stackoverflow上的标准代码进行最大的Square检测。使用roxCurve本身可以轻松找到拐角。
//将图像转换为黑白
Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BGR2GRAY);
//convert the image to black and white does (8 bit)
Imgproc.Canny(imgSource, imgSource, 50, 50);
//apply gaussian blur to smoothen lines of dots
Imgproc.GaussianBlur(imgSource, imgSource, new org.opencv.core.Size(5, 5), 5);
//find the contours
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Imgproc.findContours(imgSource, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
double maxArea = -1;
int maxAreaIdx = -1;
Log.d("size",Integer.toString(contours.size()));
MatOfPoint temp_contour = contours.get(0); //the largest is at the index 0 for starting point
MatOfPoint2f approxCurve = new MatOfPoint2f();
MatOfPoint largest_contour = contours.get(0);
//largest_contour.ge
List<MatOfPoint> largest_contours = new ArrayList<MatOfPoint>();
//Imgproc.drawContours(imgSource,contours, -1, new Scalar(0, 255, 0), 1);
for (int idx = 0; idx < contours.size(); idx++) {
temp_contour = contours.get(idx);
double contourarea = Imgproc.contourArea(temp_contour);
//compare this contour to the previous largest contour found
if (contourarea > maxArea) {
//check if this contour is a square
MatOfPoint2f new_mat = new MatOfPoint2f( temp_contour.toArray() );
int contourSize = (int)temp_contour.total();
MatOfPoint2f approxCurve_temp = new MatOfPoint2f();
Imgproc.approxPolyDP(new_mat, approxCurve_temp, contourSize*0.05, true);
if (approxCurve_temp.total() == 4) {
maxArea = contourarea;
maxAreaIdx = idx;
approxCurve=approxCurve_temp;
largest_contour = temp_contour;
}
}
}
Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BayerBG2RGB);
sourceImage =Highgui.imread(Environment.getExternalStorageDirectory().
getAbsolutePath() +"/scan/p/1.jpg");
double[] temp_double;
temp_double = approxCurve.get(0,0);
Point p1 = new Point(temp_double[0], temp_double[1]);
//Core.circle(imgSource,p1,55,new Scalar(0,0,255));
//Imgproc.warpAffine(sourceImage, dummy, rotImage,sourceImage.size());
temp_double = approxCurve.get(1,0);
Point p2 = new Point(temp_double[0], temp_double[1]);
// Core.circle(imgSource,p2,150,new Scalar(255,255,255));
temp_double = approxCurve.get(2,0);
Point p3 = new Point(temp_double[0], temp_double[1]);
//Core.circle(imgSource,p3,200,new Scalar(255,0,0));
temp_double = approxCurve.get(3,0);
Point p4 = new Point(temp_double[0], temp_double[1]);
// Core.circle(imgSource,p4,100,new Scalar(0,0,255));
List<Point> source = new ArrayList<Point>();
source.add(p1);
source.add(p2);
source.add(p3);
source.add(p4);
Mat startM = Converters.vector_Point2f_to_Mat(source);
Mat result=warp(sourceImage,startM);
return result;
透视变换的功能如下:
public Mat warp(Mat inputMat,Mat startM) {
int resultWidth = 1000;
int resultHeight = 1000;
Mat outputMat = new Mat(resultWidth, resultHeight, CvType.CV_8UC4);
Point ocvPOut1 = new Point(0, 0);
Point ocvPOut2 = new Point(0, resultHeight);
Point ocvPOut3 = new Point(resultWidth, resultHeight);
Point ocvPOut4 = new Point(resultWidth, 0);
List<Point> dest = new ArrayList<Point>();
dest.add(ocvPOut1);
dest.add(ocvPOut2);
dest.add(ocvPOut3);
dest.add(ocvPOut4);
Mat endM = Converters.vector_Point2f_to_Mat(dest);
Mat perspectiveTransform = Imgproc.getPerspectiveTransform(startM, endM);
Imgproc.warpPerspective(inputMat,
outputMat,
perspectiveTransform,
new Size(resultWidth, resultHeight),
Imgproc.INTER_CUBIC);
return outputMat;
}