我是Python新手,我正在通过代码战慢慢学习我知道这可能违反规则,但我有一个效率问题。
给你一个整数列表
ls=[100,76,56,44,89,73,68,56,64,123,2333,144,50,132,123,34,89]
必须编写函数choose_best_sum(t,k,ls)
这样你就能从ls中找到k个整数的组合,使得这些k个整数的和接近或等于t。
我的最终解决方案通过了测试,但在更详细的测试中可能因为效率而失败。我在努力了解效率。这是我的密码

import itertools

def choose_best_sum(t, k, ls):
    if sum(sorted(ls)[:k]) > t or len(ls) < k:
       return None
    else:
       combos = itertools.permutations(ls, k)
       return max([[sum(i)] for i in set(combos) if sum(i) <= t])[0]

有人能强调一下瓶颈在哪里吗(我假设是在排列调用中)以及如何使这个函数更快?
编辑:
上面所描述的解决方案给出了
1806730函数在0.458秒内调用
 ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.457    0.457 <string>:1(<module>)
    1    0.000    0.000    0.457    0.457 exercises.py:14(choose_best_sum)
742561    0.174    0.000    0.305    0.000 exercises.py:19(<genexpr>)
321601    0.121    0.000    0.425    0.000 exercises.py:20(<genexpr>)
    1    0.000    0.000    0.458    0.458 {built-in method builtins.exec}
    1    0.000    0.000    0.000    0.000 {built-in method builtins.len}
    1    0.032    0.032    0.457    0.457 {built-in method builtins.max}
    1    0.000    0.000    0.000    0.000 {built-in method builtins.sorted}
742561    0.131    0.000    0.131    0.000 {built-in method builtins.sum}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

我得到的最终解决办法是:
def choose_best_sum(t, k, ls):
   ls = [i for i in ls if i < t and i < (t - sum(sorted(ls)[:k-1]))]
   if sum(sorted(ls)[:k]) > t or len(ls) < k:
      return None
   else:
      return max(s for s in (sum(i) for i in itertools.combinations(ls, k)) if s <= t)

订货人:标准名称
0.002秒内调用7090个函数
 ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.003    0.003 <string>:1(<module>)
 2681    0.001    0.000    0.003    0.000 exercises.py:10(<genexpr>)
    1    0.000    0.000    0.003    0.003 exercises.py:5(choose_best_sum)
    1    0.000    0.000    0.000    0.000 exercises.py:6(<listcomp>)
    1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}
    1    0.000    0.000    0.000    0.000 {built-in method builtins.len}
    1    0.000    0.000    0.003    0.003 {built-in method builtins.max}
   17    0.000    0.000    0.000    0.000 {built-in method builtins.sorted}
 4385    0.001    0.000    0.001    0.000 {built-in method builtins.sum}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

最佳答案

你的表达有几个明显的缺陷

max([[sum(i)] for i in set(combos) if sum(i) <= t])[0]

你无缘无故地跑了两次;
您正在将结果打包到列表(sum(i))中,然后将其解压缩([sum(i)]
您无缘无故地将[0]转换为集合
试着用
sums = [sum(c) for c in combos]
return max(s for s in sums if s <= t)

编辑:好的,关于一个更好的算法的一些想法:
哦!首先,使用combos而不是itertools.combinations你只是在计算总数,物品的顺序没有区别如果您在ie k=4上运行,itertools.permutations将返回4!==24倍于相同输入数据上的combinations
其次,我们希望在一开始就丢弃尽可能多的permutations项显然,我们可以舍弃任何大于t的值;但我们可以得到一个更紧的界。如果将(k-1)最小值相加,则最大允许值必须(如果我们正在寻找一个精确的和,我们可以反向运行这个技巧-加上(k-1)最大值将给我们一个最小的允许值-我们可以反复应用这两个规则来丢弃更多的可能性。但这在这里并不适用。)
第三,我们可以查看(k-1)值的所有组合,然后使用ls直接跳到可能的最佳k'th值这有点复杂,因为您必须再次检查k'th值是否尚未被选为(k-1)值之一-您不能直接使用内置的bisect.bisect_left函数来执行此操作,但可以使用itertools.combinations code的修改副本(即itertools.combinations返回的索引高于当前使用的上一个索引的测试)。
这些因素加在一起会使代码加速一个系数bisect_left祝你好运!
编辑2:
让我们来学习一下过度优化的危险:-)
from bisect import bisect_right

def choose_best_sum(t, k, ls):
    """
    Find the highest sum of `k` values from `ls` such that sum <= `t`
    """
    # enough values passed?
    n = len(ls)
    if n < k:
        return None

    # remove unusable values from consideration
    ls = sorted(ls)
    max_valid_value = t - sum(ls[:k - 1])
    first_invalid_index = bisect_right(ls, max_valid_value)
    if first_invalid_index < n:
        ls = ls[:first_invalid_index]
        # enough valid values remaining?
        n = first_invalid_index   # == len(ls)
        if n < k:
            return None

    # can we still exceed t?
    highest_sum = sum(ls[-k:])
    if highest_sum <= t:
        return highest_sum

    # we have reduced the problem as much as possible
    #   and have not found a trivial solution;
    # we will now brute-force search combinations of (k - 1) values
    #   and binary-search for the best kth value
    best_found = 0
    # n = len(ls)      # already set above
    r = k - 1
    # itertools.combinations code copied from
    #   https://docs.python.org/3/library/itertools.html#itertools.combinations
    indices = list(range(r))
    # Inserted code - evaluate instead of yielding combo
    prefix_sum = sum(ls[i] for i in indices)          #
    kth_index = bisect_right(ls, t - prefix_sum) - 1  # location of largest possible kth value
    if kth_index > indices[-1]:                       # valid with rest of combination?
        total = prefix_sum + ls[kth_index]            #
        if total > best_found:                        #
            if total == t:                            #
                return t                              #
            else:                                     #
                best_found = total                    #
    x = n - r - 1    # set back by one to leave room for the kth item
    while True:
        for i in reversed(range(r)):
            if indices[i] != i + x:
                break
        else:
            return
        indices[i] += 1
        for j in range(i+1, r):
            indices[j] = indices[j-1] + 1
        # Inserted code - evaluate instead of yielding combo
        prefix_sum = sum(ls[i] for i in indices)          #
        kth_index = bisect_right(ls, t - prefix_sum) - 1  # location of largest possible kth value
        if kth_index > indices[-1]:                       # valid with rest of combination?
            total = prefix_sum + ls[kth_index]            #
            if total > best_found:                        #
                if total == t:                            #
                    return t                              #
                else:                                     #
                    best_found = total                    #
        else:
            # short-circuit! skip ahead to next level of combinations
            indices[r - 1] = n - 2

    # highest sum found is < t
    return best_found

09-16 06:13