我正在尝试使用opencv python从图像中提取所有文本区域。我已成功检测到文本区域,但无法提取它。
我提取了文本区域的较小子矩阵,但无法将它们汇总为一个较大的矩阵,我们将其视为图像中的文本区域。
import numpy as np
import cv2
from imutils.object_detection import non_max_suppression
import matplotlib.pyplot as plt
%matplotlib inline
from PIL import Image
# pip install imutils
image1 = cv2.imread("lebron_james.jpg")
#image1=cv2.cvtColor(image1,cv2.COLOR_RGB2BGR)
(height1, width1) = image1.shape[:2]
size = 320
(height2, width2) = (size, size)
image2 = cv2.resize(image1, (width2, height2))
net = cv2.dnn.readNet("frozen_east_text_detection.pb")
blob = cv2.dnn.blobFromImage(image2, 1.0, (width2, height2), (123.68, 116.78, 103.94), swapRB=True, crop=False)
net.setInput(blob)
(scores, geometry) = net.forward(["feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"])
(rows, cols) = scores.shape[2:4] # grab the rows and columns from score volume
rects = [] # stores the bounding box coordiantes for text regions
confidences = [] # stores the probability associated with each bounding box region in rects
for y in range(rows):
scoresdata = scores[0, 0, y]
xdata0 = geometry[0, 0, y]
xdata1 = geometry[0, 1, y]
xdata2 = geometry[0, 2, y]
xdata3 = geometry[0, 3, y]
angles = geometry[0, 4, y]
for x in range(cols):
if scoresdata[x] < 0.5: # if score is less than min_confidence, ignore
continue
# print(scoresdata[x])
offsetx = x * 4.0
offsety = y * 4.0
# EAST detector automatically reduces volume size as it passes through the network
# extracting the rotation angle for the prediction and computing their sine and cos
angle = angles[x]
cos = np.cos(angle)
sin = np.sin(angle)
h = xdata0[x] + xdata2[x]
w = xdata1[x] + xdata3[x]
# print(offsetx,offsety,xdata1[x],xdata2[x],cos)
endx = int(offsetx + (cos * xdata1[x]) + (sin * xdata2[x]))
endy = int(offsety + (sin * xdata1[x]) + (cos * xdata2[x]))
startx = int(endx - w)
starty = int(endy - h)
# appending the confidence score and probabilities to list
rects.append((startx, starty, endx, endy))
confidences.append(scoresdata[x])
# applying non-maxima suppression to supppress weak and overlapping bounding boxes
boxes = non_max_suppression(np.array(rects), probs=confidences)
iti=[]
rW = width1 / float(width2)
rH = height1 / float(height2)
for (startx, starty, endx, endy) in boxes:
startx = int(startx * rW)
starty = int(starty * rH)
endx = int(endx * rW)
endy = int(endy * rH)
cv2.rectangle(image1, (startx, starty), (endx, endy), (255, 0,0), 2)
#print(image1)
plt.imshow(image1)
cv2.waitKey(0)
我已经尝试过了:
rects.append((startx, starty, endx, endy))
confidences.append(scoresdata[x])
it=image1[np.ix_([startx,endx],[starty,endy])]
pt=Image.fromarray(it)
fig.add_subplot(1, cols, x)
print(it)
plt.imshow(it)
最佳答案
您可能在裁剪图像中混合了列/行。您可以尝试以下方法进行裁剪:it=image1[starty:endy, startx:endx]
关于python - 检测后如何从图像中提取文本区域,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/56219855/