针对 BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation.该论文提出的语义分割网络,根据第三方实现提供的pytorch源码,进行了详细分析解读。论文中的网络框架如下图:

BiSeNet 语义分割网络结构详细解析-LMLPHP

源码中网络设计

    对照上面的网络框架,下面的代码很好理解。其中在Context path部分,代码中使用的是res18和res101。

class ConvBlock(torch.nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, stride=2,padding=1):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU()

    def forward(self, input):
        x = self.conv1(input)
        return self.relu(self.bn(x))

class Spatial_path(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.convblock1 = ConvBlock(in_channels=3, out_channels=64)
        self.convblock2 = ConvBlock(in_channels=64, out_channels=128)
        self.convblock3 = ConvBlock(in_channels=128, out_channels=256)

    def forward(self, input):
        x = self.convblock1(input)
        x = self.convblock2(x)
        x = self.convblock3(x)
        return x

class AttentionRefinementModule(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.bn = nn.BatchNorm2d(out_channels)
        self.sigmoid = nn.Sigmoid()
        self.in_channels = in_channels
    def forward(self, input):
        # global average pooling
        x = torch.mean(input, 3, keepdim=True)
        x = torch.mean(x, 2, keepdim=True)
        assert self.in_channels == x.size(1), 'in_channels {} and out_channels {} should all be {}'.format(self.in_channels,x.size(1),x.size(1))
        x = self.conv(x)
        # x = self.sigmoid(self.bn(x))
        x = self.sigmoid(x)
        # channels of input and x should be same
        x = torch.mul(input, x)
        return x


class FeatureFusionModule(torch.nn.Module):
    def __init__(self, num_classes,in_channels=1024):
        super().__init__()
        self.in_channels = in_channels
        self.convblock = ConvBlock(in_channels=self.in_channels, out_channels=num_classes, stride=1)
        self.conv1 = nn.Conv2d(num_classes, num_classes, kernel_size=1)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(num_classes, num_classes, kernel_size=1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, input_1, input_2):
        x = torch.cat((input_1, input_2), dim=1)
        assert self.in_channels == x.size(1), 'in_channels {} of ConvBlock should be {}'.format(self.in_channels,x.size(1))
        feature = self.convblock(x)
        x = torch.mean(feature, 3, keepdim=True)
        x = torch.mean(x, 2 ,keepdim=True)
        x = self.relu(self.conv1(x))
        x = self.sigmoid(self.relu(x))
        x = torch.mul(feature, x)
        x = torch.add(x, feature)
        return x

class BiSeNet(torch.nn.Module):
    def __init__(self, num_classes, context_path):
        super().__init__()
        # build spatial path
        self.saptial_path = Spatial_path()

        # build context path
        self.context_path = build_contextpath(name=context_path)  #这里其实就是特征提取的基本网络,主要用到了res18和res101

        # build attention refinement module
        if context_path=='resnet18':
            self.attention_refinement_module1 = AttentionRefinementModule(256, 256)
            self.attention_refinement_module2 = AttentionRefinementModule(512, 512)
        elif context_path=='resnet101':
            self.attention_refinement_module1 = AttentionRefinementModule(1024, 1024)
            self.attention_refinement_module2 = AttentionRefinementModule(2048, 2048)
        else:
            raise 'context_path error'

        # build feature fusion module
        if context_path=='resnet18':
            self.feature_fusion_module = FeatureFusionModule(num_classes,1024) #此处源码没有实现,因此会有错误。我进行了分析和实现
        elif context_path=='resnet101':
            self.feature_fusion_module = FeatureFusionModule(num_classes,3328)
        else:
            raise 'context_path error'

        # build final convolution
        self.conv = nn.Conv2d(in_channels=num_classes, out_channels=num_classes, kernel_size=1)

    def forward(self, input):
        # output of spatial path
        sx = self.saptial_path(input)

        # output of context path
        cx1, cx2, tail = self.context_path(input)
        cx1 = self.attention_refinement_module1(cx1)
        cx2 = self.attention_refinement_module2(cx2)
        cx2 = torch.mul(cx2, tail)
        # upsampling
        cx1 = torch.nn.functional.interpolate(cx1, scale_factor=2, mode='bilinear')
        cx2 = torch.nn.functional.interpolate(cx2, scale_factor=4, mode='bilinear')
        cx = torch.cat((cx1, cx2), dim=1)

        # output of feature fusion module
        result = self.feature_fusion_module(sx, cx)

        # upsampling
        result = torch.nn.functional.interpolate(result, scale_factor=8, mode='bilinear')
        result = self.conv(result)
        return result

打印建立的BiseNet res18网络模型

BiSeNet(
  (saptial_path): Spatial_path(
    (convblock1): ConvBlock(
      (conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
    )
    (convblock2): ConvBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
    )
    (convblock3): ConvBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
    )
  )
  (context_path): resnet18(
    (features): ResNet(
      (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
      (layer1): Sequential(
        (0): BasicBlock(
          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace)
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (1): BasicBlock(
          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace)
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (layer2): Sequential(
        (0): BasicBlock(
          (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (downsample): Sequential(
            (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (layer3): Sequential(
        (0): BasicBlock(
          (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (downsample): Sequential(
            (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (layer4): Sequential(
        (0): BasicBlock(
          (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace)
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (downsample): Sequential(
            (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace)
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)
      (fc): Linear(in_features=512, out_features=1000, bias=True)
    )
    (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace)
    (maxpool1): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (layer1): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (1): BasicBlock(
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (layer2): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (downsample): Sequential(
          (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (layer3): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (downsample): Sequential(
          (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (layer4): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (downsample): Sequential(
          (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
  (attention_refinement_module1): AttentionRefinementModule(
    (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (sigmoid): Sigmoid()
  )
  (attention_refinement_module2): AttentionRefinementModule(
    (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))
    (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (sigmoid): Sigmoid()
  )
  (feature_fusion_module): FeatureFusionModule(
    (convblock): ConvBlock(
      (conv1): Conv2d(1024, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
    )
    (conv1): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
    (relu): ReLU()
    (conv2): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
    (sigmoid): Sigmoid()
  )
  (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
)

 

    关于该模型的训练的具体细节和效果,可以参看我的另一篇博文:  https://blog.csdn.net/rainforestgreen/article/details/85047054

12-24 22:03