学到了一种统计方案数的方法。
\(f[i] = \sum\limits_{dp_i = dp_j + 1且price_j>price_i}{f[j]}\)
(sigma怎么写......)
剩下就是一个最下降升子序列。

#include<bits/stdc++.h>
using namespace std;
long long price[6000];
long long dp[6000],dp2[6000];
long long n;

int main(){
    cin >> n;
    for(int i = 1; i <= n; i++){
        cin >> price[i];
        dp[i] = 1;
    }
    for(int i = 2; i <= n; i++){
        long long maxn = 0;
        for(int j = 1; j < i; j++){
            if(price[j] > price[i])
                dp[i] = max(dp[i],dp[j] + 1);
        }
    }
    for(int i = 1; i <= n; i++){
        if(dp[i] == 1) dp2[i] = 1;
        for(int j = 1; j < i; j++){
            if(dp[i] == dp[j] + 1 && price[i] < price[j]) dp2[i] += dp2[j];
            else if(dp[i] == dp[j] && price[i] == price[j]) dp2[i] = 0;
        }
    }
    long long ans1 = 0,ans2 = 0;
    for(int i = 1; i <= n; i++)
        if(ans1 < dp[i]) ans1 = dp[i];
    for(int i = 1; i <= n; i++)
        if(dp[i] == ans1) ans2 += dp2[i];
    cout << ans1 << " " << ans2 << endl;
    return 0;
}
02-01 08:26