题目链接:Click here
Solution:
简单容斥,我们先把\(N\)分解质因数,我们知道\(1\sim x\)里能整除\(i\)的数的个数为\(\lfloor \frac{x}{i} \rfloor\),那么直接容斥即可
Code:
#include<bits/stdc++.h>
using namespace std;
int tim,cnt,p[11];
long long read(){
long long x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
long long calc(long long Lim){
int M=1<<cnt;long long v=1,ans=Lim;
for(int i=1;i<M;i++){
int re=0;v=1;
for(int j=1;j<=cnt;j++)
if((i>>(j-1))&1) v=v*1ll*p[j],++re;
long long tmp=Lim/v;
if(re&1) ans=ans-tmp;
else ans=ans+tmp;
}return ans;
}
void solve(){
long long l=read(),r=read(),n=read();
cnt=0;
for(int i=2;i*i<=n;i++){
if(n%i) continue;
p[++cnt]=i;
while(n%i==0) n/=i;
}
if(n!=1) p[++cnt]=n;
printf("Case #%d: %lld\n",++tim,calc(r)-calc(l-1));
}
signed main(){
int t=read();
while(t--) solve();
return 0;
}