监督学习

0.线性回归(加L1、L2正则化)

from __future__ import print_function
from pyspark.ml.regression import LinearRegression
from pyspark.sql import SparkSession

spark = SparkSession\
    .builder\
    .appName("LinearRegressionWithElasticNet")\
    .getOrCreate()

# 加载数据
training = spark.read.format("libsvm")\
    .load("data/mllib/sample_linear_regression_data.txt")

lr = LinearRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)

# 拟合模型
lrModel = lr.fit(training)

# 输出系数和截距
print("Coefficients: %s" % str(lrModel.coefficients))
print("Intercept: %s" % str(lrModel.intercept))

# 模型信息总结输出
trainingSummary = lrModel.summary
print("numIterations: %d" % trainingSummary.totalIterations)
print("objectiveHistory: %s" % str(trainingSummary.objectiveHistory))
trainingSummary.residuals.show()
print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
print("r2: %f" % trainingSummary.r2)

spark.stop()

 结果:

Coefficients: [0.0,0.322925166774,-0.343854803456,1.91560170235,0.0528805868039,0.76596272046,0.0,-0.151053926692,-0.215879303609,0.220253691888]
Intercept: 0.159893684424
numIterations: 7
objectiveHistory: [0.49999999999999994, 0.4967620357443381, 0.4936361664340463, 0.4936351537897608, 0.4936351214177871, 0.49363512062528014, 0.4936351206216114]
+--------------------+
|           residuals|
+--------------------+
|  -9.889232683103197|
|  0.5533794340053554|
|  -5.204019455758823|
| -20.566686715507508|
|    -9.4497405180564|
|  -6.909112502719486|
|  -10.00431602969873|
|   2.062397807050484|
|  3.1117508432954772|
| -15.893608229419382|
|  -5.036284254673026|
|   6.483215876994333|
|  12.429497299109002|
|  -20.32003219007654|
| -2.0049838218725005|
| -17.867901734183793|
|   7.646455887420495|
| -2.2653482182417406|
|-0.10308920436195645|
|  -1.380034070385301|
+--------------------+
only showing top 20 rows

RMSE: 10.189077
r2: 0.022861

  

1.广义线性模型

from __future__ import print_function
from pyspark.sql import SparkSession
from pyspark.ml.regression import GeneralizedLinearRegression


spark = SparkSession\
    .builder\
    .appName("GeneralizedLinearRegressionExample")\
    .getOrCreate()

# 加载数据
dataset = spark.read.format("libsvm")\
    .load("data/mllib/sample_linear_regression_data.txt")

glr = GeneralizedLinearRegression(family="gaussian", link="identity", maxIter=10, regParam=0.3)

# 拟合模型
model = glr.fit(dataset)

# 输出系数和截距
print("Coefficients: " + str(model.coefficients))
print("Intercept: " + str(model.intercept))

# 模型信息总结与输出
summary = model.summary
print("Coefficient Standard Errors: " + str(summary.coefficientStandardErrors))
print("T Values: " + str(summary.tValues))
print("P Values: " + str(summary.pValues))
print("Dispersion: " + str(summary.dispersion))
print("Null Deviance: " + str(summary.nullDeviance))
print("Residual Degree Of Freedom Null: " + str(summary.residualDegreeOfFreedomNull))
print("Deviance: " + str(summary.deviance))
print("Residual Degree Of Freedom: " + str(summary.residualDegreeOfFreedom))
print("AIC: " + str(summary.aic))
print("Deviance Residuals: ")
summary.residuals().show()

spark.stop()

  结果:

Coefficients: [0.0105418280813,0.800325310056,-0.784516554142,2.36798871714,0.501000208986,1.12223511598,-0.292682439862,-0.498371743232,-0.603579718068,0.672555006719]
Intercept: 0.145921761452
Coefficient Standard Errors: [0.7950428434287478, 0.8049713176546897, 0.7975916824772489, 0.8312649247659919, 0.7945436200517938, 0.8118992572197593, 0.7919506385542777, 0.7973378214726764, 0.8300714999626418, 0.7771333489686802, 0.463930109648428]
T Values: [0.013259446542269243, 0.9942283563442594, -0.9836067393599172, 2.848657084633759, 0.6305509179635714, 1.382234441029355, -0.3695715687490668, -0.6250446546128238, -0.7271418403049983, 0.8654306337661122, 0.31453393176593286]
P Values: [0.989426199114056, 0.32060241580811044, 0.3257943227369877, 0.004575078538306521, 0.5286281628105467, 0.16752945248679119, 0.7118614002322872, 0.5322327097421431, 0.467486325282384, 0.3872259825794293, 0.753249430501097]
Dispersion: 105.609883568
Null Deviance: 53229.3654339
Residual Degree Of Freedom Null: 500
Deviance: 51748.8429484
Residual Degree Of Freedom: 490
AIC: 3769.18958718
Deviance Residuals:
+-------------------+
|  devianceResiduals|
+-------------------+
|-10.974359174246889|
| 0.8872320138420559|
| -4.596541837478908|
|-20.411667435019638|
|-10.270419345342642|
|-6.0156058956799905|
|-10.663939415849267|
| 2.1153960525024713|
| 3.9807132379137675|
|-17.225218272069533|
| -4.611647633532147|
| 6.4176669407698546|
| 11.407137945300537|
| -20.70176540467664|
| -2.683748540510967|
|-16.755494794232536|
|  8.154668342638725|
|-1.4355057987358848|
|-0.6435058688185704|
|  -1.13802589316832|
+-------------------+
only showing top 20 rows



02-10 07:31