按照ldd的说法,linux的设备驱动包括了char,block,net三种设备。char设备是比较简单的,只要分配了major、minor号,就可以进行读写处理了。相对而言,block和net要稍微复杂些。net设备姑且按下不谈,我们在以后的博文中会有涉及。今天,我们可以看看一个简单的block是怎么设计的。

为了将block和fs分开,kernel的设计者定义了request queue这一种形式。换一句话说,所有fs对block设备的请求,最终都会转变为request的形式。所以,对于block设备驱动开发的朋友来说,处理好了request queue就掌握了block设备的一半。当然,block设备很多,hd、floppy、ram都可以这么来定义,有兴趣的朋友可以在drivers/block寻找相关的代码来阅读。兴趣没有那么强的同学,可以看看我们这篇博文,基本上也能学个大概。有个基本的概念,再加上一个简单浅显的范例,对于一般的朋友来说,已经足够了。

闲话不多说,我们看看一个ramdisk代码驱动是怎么写的,代码来自《深入linux 设备驱动程序内核机制》,

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>

#include <linux/fs.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>

#define RAMHD_NAME "ramhd"
#define RAMHD_MAX_DEVICE 2
#define RAMHD_MAX_PARTITIONS 4

#define RAMHD_SECTOR_SIZE 512
#define RAMHD_SECTORS 16
#define RAMHD_HEADS 4
#define RAMHD_CYLINDERS 256

#define RAMHD_SECTOR_TOTAL (RAMHD_SECTORS * RAMHD_HEADS *RAMHD_CYLINDERS)
#define RAMHD_SIZE (RAMHD_SECTOR_SIZE * RAMHD_SECTOR_TOTAL) //8mb

typedef struct {
  unsigned char* data;
  struct request_queue* queue;
  struct gendisk* gd;
}RAMHD_DEV;

static char* sdisk[RAMHD_MAX_DEVICE] = {NULL};
static RAMHD_DEV* rdev[RAMHD_MAX_DEVICE] = {NULL};

static dev_t ramhd_major;

static int ramhd_space_init(void)
{
  int i;
  int err = 0;
  for(i = 0; i < RAMHD_MAX_DEVICE; i++){
    sdisk[i] = vmalloc(RAMHD_SIZE);
    if(!sdisk[i]){
      err = -ENOMEM;
      return err;
    }

    memset(sdisk[i], 0, RAMHD_SIZE);
  }

  return err;
}

static void ramhd_space_clean(void)
{
  int i;
  for(i = 0; i < RAMHD_MAX_DEVICE; i++){
    vfree(sdisk[i]);
  }
}

static int ramhd_open(struct block_device* bdev, fmode_t mode)
{
  return 0;
}

static int ramhd_release(struct gendisk*gd, fmode_t mode)
{
  return 0;
}

static int ramhd_ioctl(struct block_device* bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
{
  int err;
  struct hd_geometry geo;

  switch(cmd)
  {
    case HDIO_GETGEO:
      err = !access_ok(VERIFY_WRITE, arg, sizeof(geo));
      if(err)
        return -EFAULT;

      geo.cylinders = RAMHD_CYLINDERS;
      geo.heads = RAMHD_HEADS;
      geo.sectors = RAMHD_SECTORS;
      geo.start = get_start_sect(bdev);

      if(copy_to_user((void*)arg, &geo, sizeof(geo)))
        return -EFAULT;

      return 0;
  }

  return -ENOTTY;
}

static struct block_device_operations ramhd_fops = {
  .owner = THIS_MODULE,
  .open = ramhd_open,
  .release = ramhd_release,
  .ioctl = ramhd_ioctl,
};

static int ramhd_make_request(struct request_queue* q, struct bio* bio)
{
  char* pRHdata;
  char* pBuffer;
  struct bio_vec* bvec;
  int i;
  int err = 0;

  struct block_device* bdev = bio->bi_bdev;
  RAMHD_DEV* pdev = bdev->bd_disk->private_data;

  if(((bio->bi_sector * RAMHD_SECTOR_SIZE) + bio->bi_size) > RAMHD_SIZE){
    err = -EIO;
    return err;
  }

  pRHdata = pdev->data + (bio->bi_sector * RAMHD_SECTOR_SIZE);
  bio_for_each_segment(bvec, bio, i){
    pBuffer = kmap(bvec->bv_page) + bvec->bv_offset;
    switch(bio_data_dir(bio)){
      case READ:
        memcpy(pBuffer, pRHdata, bvec->bv_len);
        flush_dcache_page(bvec->bv_page);
        break;

      case WRITE:
        flush_dcache_page(bvec->bv_page);
        memcpy(pRHdata, pBuffer, bvec->bv_len);
        break;

      default:
        kunmap(bvec->bv_page);
        goto out;
    }

    kunmap(bvec->bv_page);
    pRHdata += bvec->bv_len;
  }

out:
  bio_endio(bio, err);
  return 0;
}

static int alloc_ramdev(void)
{
  int i;
  for(i = 0; i < RAMHD_MAX_DEVICE; i++){
    rdev[i] = kzalloc(sizeof(RAMHD_DEV), GFP_KERNEL);
    if(!rdev[i]){
      return -ENOMEM;
    }
  }

  return 0;
}

static void clean_ramdev(void)
{
  int i;

  for(i = 0; i < RAMHD_MAX_DEVICE; i++){
    if(rdev[i])
      kfree(rdev[i]);
  }
}

static int __init ramhd_init(void)
{
  int i;

  ramhd_space_init();
  alloc_ramdev();

  ramhd_major = register_blkdev(0, RAMHD_NAME);

  for(i = 0; i < RAMHD_MAX_DEVICE; i++){
    rdev[i]->data = sdisk[i];
    rdev[i]->queue = blk_alloc_queue(GFP_KERNEL);
    blk_queue_make_request(rdev[i]->queue, ramhd_make_request);

    rdev[i]->gd = alloc_disk(RAMHD_MAX_PARTITIONS);
    rdev[i]->gd->major = ramhd_major;
    rdev[i]->gd->first_minor = i * RAMHD_MAX_PARTITIONS;
    rdev[i]->gd->fops = &ramhd_fops;
    rdev[i]->gd->queue = rdev[i]->queue;
    rdev[i]->gd->private_data = rdev[i];
    sprintf(rdev[i]->gd->disk_name, "ramhd%c", 'a' +i);
    rdev[i]->gd->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
    set_capacity(rdev[i]->gd, RAMHD_SECTOR_TOTAL);
    add_disk(rdev[i]->gd);
  }

  return 0;
}

static void __exit ramhd_exit(void)
{
  int i;
  for(i = 0; i < RAMHD_MAX_DEVICE; i++){
    del_gendisk(rdev[i]->gd);
    put_disk(rdev[i]->gd);
    blk_cleanup_queue(rdev[i]->queue);
  }

  clean_ramdev();
  ramhd_space_clean();
  unregister_blkdev(ramhd_major, RAMHD_NAME);
}

module_init(ramhd_init);
module_exit(ramhd_exit);

MODULE_AUTHOR("dennis__chen@ AMDLinuxFGL");
MODULE_DESCRIPTION("The ramdisk implementation with request function");
MODULE_LICENSE("GPL"); 

为了大家方便,顺便也把Makefile放出来,看过前面blog的朋友都知道,这其实很简单,

ifneq ($(KERNELRELEASE),)
obj-m := ramdisk.o

else
PWD := $(shell pwd)
KVER := $(shell uname -r)
KDIR := /lib/modules/$(KVER)/build
all:
  $(MAKE) -C $(KDIR) M=$(PWD) modules
clean:
  rm -rf .*.cmd *.o *.mod.c *.ko .tmp_versions modules.* Module.*
endif

这段代码究竟有没有用呢?可以按照下面的步骤来做,

    a)make 一下,生成ramdisk.ko;

    b)编译好了之后,就可以安装驱动了,在linux下是这么做的,sudo insmod ramdisk.ko;

    c)安装好了,利用ls /dev/ramhd*, 就会发现在/dev下新增两个结点,即/dev/ramhda和/dev/ramhdb;

    d)不妨选择其中一个节点进行分区处理, sudo fdisk /dev/ramhda,简单处理的话就建立一个分区, 生成/dev/ramhda1;

    e)创建文件系统,sudo mkfs.ext3 /dev/ramhda1;

    f)有了上面的文件系统,就可以进行mount处理,不妨sudo mount /dev/ramhda1 /mnt;

    g)上面都弄好了,大家就可以copy、delete文件试试了,是不是很简单。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

02-04 08:50
查看更多