题意

给你一个\(1e5\)的有点权的树,有\(1e5\)个操作:
1.给第\(x\)层的点加上\(y\)
2.求以\(x\)为根的子树的点权和

思路

首先处理出层数为x的所有点
操作2一般都是用dfs序+树状数组/线段树,这题因为它奇怪的题目名字,选择了树状数组
而操作1如果直接暴力的话,复杂度将是\(O(nlogn)\)的,我们想办法把这个复杂度尽量摊到操作2上去
因为只是对层数为\(x\)的增加点权,操作1操作的点数取决于层数为\(x\)的点的个数,我们可以分块
如果操作1要处理的点数超过\(m\),就把m这一层打个标记,否则暴力,复杂度\(O(mlogn)\)
对于操作2,我们\(logn\)得到子树中点数小于\(m\)的层的答案后,从点数大于\(m\)的层中二分算出贡献,复杂度\(O(\frac{n}{m}logn)\)
由于我们是用dfs序来得到每层中的所有点的,所以x的所有同一层的孩子在这里连续,所以可以二分
总复杂度\(O(q(mlogn+\frac{n}{m}))\)
所以\(m=\sqrt{n}\)
复杂度\(O(qlog\sqrt{n}logn)\)

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional>

#define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1

using namespace std;

typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL;

const db eps = 1e-6;
const int mod = 1e9+7;
const int maxn = 2e5+100;
const int maxm = 2e6+100;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0);

int n,q,m;
vector<int>v[maxn],g[maxn],G;
ll tree[maxn];
int tot;
int lowbit(int x){return x&(-x);}
void add(int x, ll c){
    for(int i = x; i <= n; i+=lowbit(i))tree[i]+=c;
}
ll sum(int x){
    ll ans = 0;
    for(int i = x; i; i-=lowbit(i))ans+=tree[i];
    return ans;
}
int S[maxn],bg[maxn],ed[maxn];
int dep[maxn];
void dfs(int x, int dp){
    bg[x]=++tot;
    g[dp].pb(tot);
    for(int i = 0; i < (int)v[x].size(); i++){
        int y = v[x][i];
        dfs(y,dp+1);
    }
    ed[x]=tot;
}
ll C[maxn];
int main() {
    scanf("%d %d",  &n, &q);
    m = (int)sqrt(n);
    for(int i = 1; i < n; i++){
        int x, y;
        scanf("%d %d", &x, &y);
        v[x].pb(y);
    }
    dfs(1,0);
    for(int i = 0; i <= n; i++){
        if(g[i].size()>m){
            G.pb(i);
        }
    }
    while(q--){
        int op,x,y;
        scanf("%d %d", &op,&x);
        if(op==1){
            scanf("%d", &y);
            if((int)g[x].size()<=m){
                for(int i = 0; i <(int)g[x].size(); i++){
                    int to = g[x][i];
                    add(to,y);
                }
            }
            else C[x]+=y;
        }
        else{
            ll ans = sum(ed[x])-sum(bg[x]-1);
            for(int i = 0; i < (int)G.size(); i++){
                int y = G[i];

                int L=-1,R=-1;
                int l=0,r=g[y].size()-1;
                while(l<=r){
                    int mid = l+r>>1;
                    if(g[y][mid]>=bg[x]){
                        L=mid;
                        r=mid-1;
                    }
                    else l=mid+1;
                }
                l=0,r=g[y].size()-1;
                while(l<=r){
                    int mid = l+r>>1;
                    if(g[y][mid]<=ed[x]){
                        R=mid;
                        l=mid+1;
                    }
                    else r=mid-1;
                }
                if(L<=R&&L!=-1&&R!=-1)ans+=C[y]*(R-L+1);
            }
            printf("%lld\n",ans);
        }
    }
    return 0;
}
02-13 14:55