我需要一种算法来计算螺旋路径上的点分布。
该算法的输入参数应为:
绘制的螺旋是阿基米德螺旋,获得的点彼此之间必须为等距。
该算法应打印出单点笛卡尔坐标的序列,例如:
点1:(0.0)
点2:(...,...)
........
点N(...,...)
编程语言并不重要,所有帮助都将不胜感激!
编辑:
我已经从此站点获取并修改了此示例:
//
//
// centerX-- X origin of the spiral.
// centerY-- Y origin of the spiral.
// radius--- Distance from origin to outer arm.
// sides---- Number of points or sides along the spiral's arm.
// coils---- Number of coils or full rotations. (Positive numbers spin clockwise, negative numbers spin counter-clockwise)
// rotation- Overall rotation of the spiral. ('0'=no rotation, '1'=360 degrees, '180/360'=180 degrees)
//
void SetBlockDisposition(float centerX, float centerY, float radius, float sides, float coils, float rotation)
{
//
// How far to step away from center for each side.
var awayStep = radius/sides;
//
// How far to rotate around center for each side.
var aroundStep = coils/sides;// 0 to 1 based.
//
// Convert aroundStep to radians.
var aroundRadians = aroundStep * 2 * Mathf.PI;
//
// Convert rotation to radians.
rotation *= 2 * Mathf.PI;
//
// For every side, step around and away from center.
for(var i=1; i<=sides; i++){
//
// How far away from center
var away = i * awayStep;
//
// How far around the center.
var around = i * aroundRadians + rotation;
//
// Convert 'around' and 'away' to X and Y.
var x = centerX + Mathf.Cos(around) * away;
var y = centerY + Mathf.Sin(around) * away;
//
// Now that you know it, do it.
DoSome(x,y);
}
}
但是,点的配置是错误的,这些点彼此之间不是等距的。
正确的分配示例是左侧的图像:
最佳答案
对于第一个近似值-这可能足以绘制足够接近的块-螺旋线是一个圆,并按比率chord / radius
增大 Angular 。
// value of theta corresponding to end of last coil
final double thetaMax = coils * 2 * Math.PI;
// How far to step away from center for each side.
final double awayStep = radius / thetaMax;
// distance between points to plot
final double chord = 10;
DoSome ( centerX, centerY );
// For every side, step around and away from center.
// start at the angle corresponding to a distance of chord
// away from centre.
for ( double theta = chord / awayStep; theta <= thetaMax; ) {
//
// How far away from center
double away = awayStep * theta;
//
// How far around the center.
double around = theta + rotation;
//
// Convert 'around' and 'away' to X and Y.
double x = centerX + Math.cos ( around ) * away;
double y = centerY + Math.sin ( around ) * away;
//
// Now that you know it, do it.
DoSome ( x, y );
// to a first approximation, the points are on a circle
// so the angle between them is chord/radius
theta += chord / away;
}
但是,对于较松散的螺旋,您将必须更准确地解决路径距离,因为空格太宽,连续点的
away
之间的差异与chord
相比非常重要:上面的第二个版本使用基于求解增量的步骤,该增量基于使用theta和theta + delta的平均半径:
// take theta2 = theta + delta and use average value of away
// away2 = away + awayStep * delta
// delta = 2 * chord / ( away + away2 )
// delta = 2 * chord / ( 2*away + awayStep * delta )
// ( 2*away + awayStep * delta ) * delta = 2 * chord
// awayStep * delta ** 2 + 2*away * delta - 2 * chord = 0
// plug into quadratic formula
// a= awayStep; b = 2*away; c = -2*chord
double delta = ( -2 * away + Math.sqrt ( 4 * away * away + 8 * awayStep * chord ) ) / ( 2 * awayStep );
theta += delta;
为了在松散的螺旋上获得更好的结果,请使用数值迭代解决方案来找到增量值,其中计算出的距离在适当的公差范围内。
关于algorithm - 在螺旋上画等距点,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/13894715/