20190919CF训练

扫码查看

A、给你一堆数字,你可以从这些数字取出任意多个组合成一个新的数字,问你这个新的数字在k进制下的最后一位一共有多少种情况

首先考虑k进制下的最后一位是这个数字对k取余,然后有一个扩展贝祖定理:

a1x1+...+anxn=d*gcd(a1...an)

其中d是正整数

那么把gcd求出来然后算20000次倍数丢进set即可

代码:

#include <bits/stdc++.h>
#define int long long
#define sc(a) scanf("%lld",&a)
#define scc(a,b) scanf("%lld %lld",&a,&b)
#define sccc(a,b,c) scanf("%lld %lld %lld",&a,&b,&c)
#define scs(a) scanf("%s",a)
#define schar(a) scanf("%c",&a)
#define pr(a) printf("%lld",a)
#define fo(i,a,b) for(int i=a;i<b;++i)
#define re(i,a,b) for(int i=a;i<=b;++i)
#define rfo(i,a,b) for(int i=a;i>b;--i)
#define rre(i,a,b) for(int i=a;i>=b;--i)
#define prn() printf("\n")
#define prs() printf(" ")
#define mkp make_pair
#define pii pair<int,int>
#define pub(a) push_back(a)
#define pob() pop_back()
#define puf(a) push_front(a)
#define pof() pop_front()
#define fst first
#define snd second
#define frt front()
#define bak back()
#define mem0(a) memset(a,0,sizeof(a))
#define memmx(a) memset(a,0x3f3f,sizeof(a))
#define memmn(a) memset(a,-0x3f3f,sizeof(a))
#define debug
#define db double
#define yyes cout<<"YES"<<endl;
#define nno cout<<"NO"<<endl;
using namespace std;
typedef vector<int> vei;
typedef vector<pii> vep;
typedef map<int,int> mpii;
typedef map<char,int> mpci;
typedef map<string,int> mpsi;
typedef deque<int> deqi;
typedef deque<char> deqc;
typedef priority_queue<int> mxpq;
typedef priority_queue<int,vector<int>,greater<int> > mnpq;
typedef priority_queue<pii> mxpqii;
typedef priority_queue<pii,vector<pii>,greater<pii> > mnpqii;
const int maxn=500005;
const int inf=0x3f3f3f3f3f3f3f3f;
const int MOD=100000007;
const db eps=1e-10;
int qpow(int a,int b){int tmp=a%MOD,ans=1;while(b){if(b&1){ans*=tmp,ans%=MOD;}tmp*=tmp,tmp%=MOD,b>>=1;}return ans;}
int lowbit(int x){return x&-x;}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int mmax(int a,int b,int c){return max(a,max(b,c));}
int mmin(int a,int b,int c){return min(a,min(b,c));}
void mod(int &a){a+=MOD;a%=MOD;}
bool chk(int now){}
int half(int l,int r){while(l<=r){int m=(l+r)/2;if(chk(m))r=m-1;else l=m+1;}return l;}
int ll(int p){return p<<1;}
int rr(int p){return p<<1|1;}
int mm(int l,int r){return (l+r)/2;}
int lg(int x){if(x==0) return 1;return (int)log2(x)+1;}
bool smleql(db a,db b){if(a<b||fabs(a-b)<=eps)return true;return false;}
bool bigeql(db a,db b){if(a>b||fabs(a-b)<=eps)return true;return false;}
bool eql(db a,db b){if(fabs(a-b)<eps) return 1;return 0;}
db len(db a,db b,db c,db d){return sqrt((a-c)*(a-c)+(b-d)*(b-d));}
bool isp(int x){if(x==1)return false;if(x==2)return true;for(int i=2;i*i<=x;++i)if(x%i==0)return false;return true;}
inline int read(){
    char ch=getchar();int s=0,w=1;
    while(ch<48||ch>57){if(ch=='-')w=-1;ch=getchar();}
    while(ch>=48&&ch<=57){s=(s<<1)+(s<<3)+ch-48;ch=getchar();}
    return s*w;
}
inline void write(int x){
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+48);
}
int gcd(int a, int b){
    if(a==0) return b;
    if(b==0) return a;
    if(!(a&1)&&!(b&1)) return gcd(a>>1,b>>1)<<1;
    else if(!(b&1)) return gcd(a,b>>1);
    else if(!(a&1)) return gcd(a>>1,b);
    else return gcd(abs(a-b),min(a,b));
}
int lcm(int x,int y){return x*y/gcd(x,y);}

int n,k,a[maxn];
set<int> s;

signed main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0),cout.tie(0);
    cin>>n>>k;
    cin>>a[1];
    int g=a[1];
    re(i,2,n) cin>>a[i],g=gcd(g,a[i]);
    for(int i=1;i<=200000;++i)
        s.insert((g*i)%k);
    cout<<s.size()<<endl;
    for(auto i=s.begin();i!=s.end();++i)
        cout<<*i<<' ';
    return 0;
}

B、给你一棵树,每个点有点权a,同时给定从根节点到该节点所有点权a的和s

现在把某些s擦除了,需要你重建树使得a的和最小,不能重建输出-1,点权必须大于等于0

输出-1的条件很好说,如果父节点的s小于当前节点s,输出-1

简单的贪心做法是能填0则填0,然后递归地计算儿子

但是这样的做法有个问题,如果你在当前层填了0,那么可能在儿子上会产生额外消耗,看一个样例:

5

1 2 2 3

1 -1 2 3 -1

这里如果把三号节点填上0,那么四号和五号节点的a总和是3,但是如果三号节点填上1,四号和五号节点的总和是1

这意味着我们在填数字的时候应该尽量令父节点的a值更大,那么才有可能使得儿子的a值更小

需要知道儿子数量不会比1小

代码:

#include <bits/stdc++.h>
#define int long long
#define sc(a) scanf("%lld",&a)
#define scc(a,b) scanf("%lld %lld",&a,&b)
#define sccc(a,b,c) scanf("%lld %lld %lld",&a,&b,&c)
#define scs(a) scanf("%s",a)
#define schar(a) scanf("%c",&a)
#define pr(a) printf("%lld",a)
#define fo(i,a,b) for(int i=a;i<b;++i)
#define re(i,a,b) for(int i=a;i<=b;++i)
#define rfo(i,a,b) for(int i=a;i>b;--i)
#define rre(i,a,b) for(int i=a;i>=b;--i)
#define prn() printf("\n")
#define prs() printf(" ")
#define mkp make_pair
#define pii pair<int,int>
#define pub(a) push_back(a)
#define pob() pop_back()
#define puf(a) push_front(a)
#define pof() pop_front()
#define fst first
#define snd second
#define frt front()
#define bak back()
#define mem0(a) memset(a,0,sizeof(a))
#define memmx(a) memset(a,0x3f3f,sizeof(a))
#define memmn(a) memset(a,-0x3f3f,sizeof(a))
#define debug
#define db double
#define yyes cout<<"YES"<<endl;
#define nno cout<<"NO"<<endl;
using namespace std;
typedef vector<int> vei;
typedef vector<pii> vep;
typedef map<int,int> mpii;
typedef map<char,int> mpci;
typedef map<string,int> mpsi;
typedef deque<int> deqi;
typedef deque<char> deqc;
typedef priority_queue<int> mxpq;
typedef priority_queue<int,vector<int>,greater<int> > mnpq;
typedef priority_queue<pii> mxpqii;
typedef priority_queue<pii,vector<pii>,greater<pii> > mnpqii;
const int maxn=500005;
const int inf=0x3f3f3f3f3f3f3f3f;
const int MOD=100000007;
const db eps=1e-10;
int qpow(int a,int b){int tmp=a%MOD,ans=1;while(b){if(b&1){ans*=tmp,ans%=MOD;}tmp*=tmp,tmp%=MOD,b>>=1;}return ans;}
int lowbit(int x){return x&-x;}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int mmax(int a,int b,int c){return max(a,max(b,c));}
int mmin(int a,int b,int c){return min(a,min(b,c));}
void mod(int &a){a+=MOD;a%=MOD;}
bool chk(int now){}
int half(int l,int r){while(l<=r){int m=(l+r)/2;if(chk(m))r=m-1;else l=m+1;}return l;}
int ll(int p){return p<<1;}
int rr(int p){return p<<1|1;}
int mm(int l,int r){return (l+r)/2;}
int lg(int x){if(x==0) return 1;return (int)log2(x)+1;}
bool smleql(db a,db b){if(a<b||fabs(a-b)<=eps)return true;return false;}
bool bigeql(db a,db b){if(a>b||fabs(a-b)<=eps)return true;return false;}
bool eql(db a,db b){if(fabs(a-b)<eps) return 1;return 0;}
db len(db a,db b,db c,db d){return sqrt((a-c)*(a-c)+(b-d)*(b-d));}
bool isp(int x){if(x==1)return false;if(x==2)return true;for(int i=2;i*i<=x;++i)if(x%i==0)return false;return true;}
inline int read(){
    char ch=getchar();int s=0,w=1;
    while(ch<48||ch>57){if(ch=='-')w=-1;ch=getchar();}
    while(ch>=48&&ch<=57){s=(s<<1)+(s<<3)+ch-48;ch=getchar();}
    return s*w;
}
inline void write(int x){
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+48);
}
int gcd(int a, int b){
    if(a==0) return b;
    if(b==0) return a;
    if(!(a&1)&&!(b&1)) return gcd(a>>1,b>>1)<<1;
    else if(!(b&1)) return gcd(a,b>>1);
    else if(!(a&1)) return gcd(a>>1,b);
    else return gcd(abs(a-b),min(a,b));
}
int lcm(int x,int y){return x*y/gcd(x,y);}

int n;
int p[maxn],s[maxn],a[maxn];
vei g[maxn];
bool can=1;

void dfs(int x,int f){
    if(!can) return;
    if(s[x]==-1){
        int mn=inf;
        fo(i,0,g[x].size()){
            if(g[x][i]!=f)
                mn=min(mn,s[g[x][i]]);
        }
//        cout<<mn<<endl;
        if(mn>s[f]&&mn!=inf)
        s[x]=mn,a[x]=mn-s[f];
        else
        s[x]=s[f],a[x]=0;
    }
    else{
        if(s[f]>s[x]){
            can=0;
            return;
        }
        else{
            a[x]=s[x]-s[f];
        }
    }
    fo(i,0,g[x].size()){
        if(g[x][i]!=f)
            dfs(g[x][i],x);
    }
}

signed main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0),cout.tie(0);
    p[1]=1;
    cin>>n;
    re(i,2,n) cin>>p[i],g[p[i]].pub(i);
    re(i,1,n) cin>>s[i];
    dfs(1,0);
    int ans=0;
    re(i,1,n) ans+=a[i];
    if(can) cout<<ans;
    else cout<<-1;
    return 0;
}

C、签到,给你一个字符串,你需要删去一个连续子串使得剩下的串的字符集大小为1,保证原串至少有两种不同的字符

计算一下前缀最长字符集为1的子串和后缀最长字符集为1的子串,累加一下答案即可

注意特判一下前缀和后缀的字符一模一样的情况,乘法取个余即可

代码:

#include <bits/stdc++.h>
#define int long long
#define sc(a) scanf("%lld",&a)
#define scc(a,b) scanf("%lld %lld",&a,&b)
#define sccc(a,b,c) scanf("%lld %lld %lld",&a,&b,&c)
#define scs(a) scanf("%s",a)
#define schar(a) scanf("%c",&a)
#define pr(a) printf("%lld",a)
#define fo(i,a,b) for(int i=a;i<b;++i)
#define re(i,a,b) for(int i=a;i<=b;++i)
#define rfo(i,a,b) for(int i=a;i>b;--i)
#define rre(i,a,b) for(int i=a;i>=b;--i)
#define prn() printf("\n")
#define prs() printf(" ")
#define mkp make_pair
#define pii pair<int,int>
#define pub(a) push_back(a)
#define pob() pop_back()
#define puf(a) push_front(a)
#define pof() pop_front()
#define fst first
#define snd second
#define frt front()
#define bak back()
#define mem0(a) memset(a,0,sizeof(a))
#define memmx(a) memset(a,0x3f3f,sizeof(a))
#define memmn(a) memset(a,-0x3f3f,sizeof(a))
#define debug
#define db double
#define yyes cout<<"YES"<<endl;
#define nno cout<<"NO"<<endl;
using namespace std;
typedef vector<int> vei;
typedef vector<pii> vep;
typedef map<int,int> mpii;
typedef map<char,int> mpci;
typedef map<string,int> mpsi;
typedef deque<int> deqi;
typedef deque<char> deqc;
typedef priority_queue<int> mxpq;
typedef priority_queue<int,vector<int>,greater<int> > mnpq;
typedef priority_queue<pii> mxpqii;
typedef priority_queue<pii,vector<pii>,greater<pii> > mnpqii;
const int maxn=500005;
const int inf=0x3f3f3f3f3f3f3f3f;
const int MOD=998244353;
const db eps=1e-10;
int qpow(int a,int b){int tmp=a%MOD,ans=1;while(b){if(b&1){ans*=tmp,ans%=MOD;}tmp*=tmp,tmp%=MOD,b>>=1;}return ans;}
int lowbit(int x){return x&-x;}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int mmax(int a,int b,int c){return max(a,max(b,c));}
int mmin(int a,int b,int c){return min(a,min(b,c));}
void mod(int &a){a+=MOD;a%=MOD;}
bool chk(int now){}
int half(int l,int r){while(l<=r){int m=(l+r)/2;if(chk(m))r=m-1;else l=m+1;}return l;}
int ll(int p){return p<<1;}
int rr(int p){return p<<1|1;}
int mm(int l,int r){return (l+r)/2;}
int lg(int x){if(x==0) return 1;return (int)log2(x)+1;}
bool smleql(db a,db b){if(a<b||fabs(a-b)<=eps)return true;return false;}
bool bigeql(db a,db b){if(a>b||fabs(a-b)<=eps)return true;return false;}
bool eql(db a,db b){if(fabs(a-b)<eps) return 1;return 0;}
db len(db a,db b,db c,db d){return sqrt((a-c)*(a-c)+(b-d)*(b-d));}
bool isp(int x){if(x==1)return false;if(x==2)return true;for(int i=2;i*i<=x;++i)if(x%i==0)return false;return true;}
inline int read(){
    char ch=getchar();int s=0,w=1;
    while(ch<48||ch>57){if(ch=='-')w=-1;ch=getchar();}
    while(ch>=48&&ch<=57){s=(s<<1)+(s<<3)+ch-48;ch=getchar();}
    return s*w;
}
inline void write(int x){
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+48);
}
int gcd(int a, int b){
    if(a==0) return b;
    if(b==0) return a;
    if(!(a&1)&&!(b&1)) return gcd(a>>1,b>>1)<<1;
    else if(!(b&1)) return gcd(a,b>>1);
    else if(!(a&1)) return gcd(a>>1,b);
    else return gcd(abs(a-b),min(a,b));
}
int lcm(int x,int y){return x*y/gcd(x,y);}

int n;
string s;

signed main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0),cout.tie(0);
    cin>>n;
    cin>>s;
    s='#'+s;
    int c1=1,ans=0;
    char c=s[1];
    re(i,2,n){
        if(s[i]==c) c1++;
        else break;
    }
    int c2=1;
    c=s[n];
    rre(i,n-1,1){
        if(s[i]==c) c2++;
        else break;
    }
    ans=c1+c2;
    if(s[1]==s[n]){
//        cout<<"nmsl"<<endl;
        ans+=(c1*c2)%MOD;
        ans%=MOD;
    }
    ans+=1;
    cout<<ans;
    return 0;
}

D、给你平面上的一堆点,你需要找到一个圆使得这个圆与y=0至多只有一个交点,并且这个圆包含了所有的点

输出最小的半径,如果不存在这样的圆输出-1

考虑-1的情况,如果y=0两侧都有点则一定不可能,剩下的所有情况都可以画出一个巨型的圆使得它满足条件

现在可以二分圆的半径了

圆心位于y=R这条直线上,R是二分的半径,求出以所有点为圆心,R为半径的圆与y=R的交线,如果这些交线至少有一个公共交点,那么返回true

这个可能有点绕,考虑一个圆,半径为r包含了某个点的情况,那么圆心一定在以这个点为圆心,r为半径的圆里,画图康康就知道了

剩下的是计算交线的位置,维护左右区间即可,如下图:

 注意特判一下l小于0的情况

以及double的二分最好限定次数,每次令l=m或者r=m即可,不需加加减减

代码:

#include <bits/stdc++.h>
#define int long long
#define sc(a) scanf("%lld",&a)
#define scc(a,b) scanf("%lld %lld",&a,&b)
#define sccc(a,b,c) scanf("%lld %lld %lld",&a,&b,&c)
#define scs(a) scanf("%s",a)
#define schar(a) scanf("%c",&a)
#define pr(a) printf("%lld",a)
#define fo(i,a,b) for(int i=a;i<b;++i)
#define re(i,a,b) for(int i=a;i<=b;++i)
#define rfo(i,a,b) for(int i=a;i>b;--i)
#define rre(i,a,b) for(int i=a;i>=b;--i)
#define prn() printf("\n")
#define prs() printf(" ")
#define mkp make_pair
#define pii pair<int,int>
#define pub(a) push_back(a)
#define pob() pop_back()
#define puf(a) push_front(a)
#define pof() pop_front()
#define fst first
#define snd second
#define frt front()
#define bak back()
#define mem0(a) memset(a,0,sizeof(a))
#define memmx(a) memset(a,0x3f3f,sizeof(a))
#define memmn(a) memset(a,-0x3f3f,sizeof(a))
#define debug
#define db double
#define yyes cout<<"YES"<<endl;
#define nno cout<<"NO"<<endl;
using namespace std;
typedef vector<int> vei;
typedef vector<pii> vep;
typedef map<int,int> mpii;
typedef map<char,int> mpci;
typedef map<string,int> mpsi;
typedef deque<int> deqi;
typedef deque<char> deqc;
typedef priority_queue<int> mxpq;
typedef priority_queue<int,vector<int>,greater<int> > mnpq;
typedef priority_queue<pii> mxpqii;
typedef priority_queue<pii,vector<pii>,greater<pii> > mnpqii;
const int maxn=500005;
const int inf=0x3f3f3f3f3f3f3f3f;
const int MOD=100000007;
const db eps=1e-10;
int qpow(int a,int b){int tmp=a%MOD,ans=1;while(b){if(b&1){ans*=tmp,ans%=MOD;}tmp*=tmp,tmp%=MOD,b>>=1;}return ans;}
int lowbit(int x){return x&-x;}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int mmax(int a,int b,int c){return max(a,max(b,c));}
int mmin(int a,int b,int c){return min(a,min(b,c));}
void mod(int &a){a+=MOD;a%=MOD;}
//bool chk(int now){}
//int half(int l,int r){while(l<=r){int m=(l+r)/2;if(chk(m))r=m-1;else l=m+1;}return l;}
int ll(int p){return p<<1;}
int rr(int p){return p<<1|1;}
int mm(int l,int r){return (l+r)/2;}
int lg(int x){if(x==0) return 1;return (int)log2(x)+1;}
bool smleql(db a,db b){if(a<b||fabs(a-b)<=eps)return true;return false;}
bool bigeql(db a,db b){if(a>b||fabs(a-b)<=eps)return true;return false;}
bool eql(db a,db b){if(fabs(a-b)<eps) return 1;return 0;}
db len(db a,db b,db c,db d){return sqrt((a-c)*(a-c)+(b-d)*(b-d));}
bool isp(int x){if(x==1)return false;if(x==2)return true;for(int i=2;i*i<=x;++i)if(x%i==0)return false;return true;}
inline int read(){
    char ch=getchar();int s=0,w=1;
    while(ch<48||ch>57){if(ch=='-')w=-1;ch=getchar();}
    while(ch>=48&&ch<=57){s=(s<<1)+(s<<3)+ch-48;ch=getchar();}
    return s*w;
}
inline void write(int x){
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+48);
}
int gcd(int a, int b){
    if(a==0) return b;
    if(b==0) return a;
    if(!(a&1)&&!(b&1)) return gcd(a>>1,b>>1)<<1;
    else if(!(b&1)) return gcd(a,b>>1);
    else if(!(a&1)) return gcd(a>>1,b);
    else return gcd(abs(a-b),min(a,b));
}
int lcm(int x,int y){return x*y/gcd(x,y);}

int n;
struct point{
    db x,y;
    void read(){
        cin>>x>>y;
    }
}p[maxn];

bool chk(db R){
    db l=-inf,r=inf;
    re(i,1,n){
        db x=p[i].x,y=p[i].y;
        if(2*y*R-y*y<0.0) return 0;
        db len=sqrt(2*y*R-y*y);
        if(x-len>r||x+len<l) return 0;
        l=max(l,x-len),r=min(r,x+len);
    }
//    cout<<R<<" nmsl"<<endl;
    return 1;
}

db half(db l,db r){
    int cnt=1000;
    while(cnt--){
        db m=(l+r)/2.0;
        if(chk(m)) r=m;
        else l=m;
    }
    return l;
}

signed main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0),cout.tie(0);
    cout<<fixed<<setprecision(10);
    cin>>n;
    bool neg=0,pos=0;
    re(i,1,n){
        p[i].read();
        if(p[i].y>0.0) pos=1;
        else neg=1;
    }
    if(pos&&neg){
        cout<<-1;
        return 0;
    }
    re(i,1,n){
        p[i].y=fabs(p[i].y);
    }
    db ans=half(0,1e17);
//    cout<<ans<<" nmsl"<<endl;
    cout<<ans;
    return 0;
}

E、一张有向图,给定起点,问你最少需要加多少条边使得从s可以抵达所有的城市

SALA第一场的原题,只要先缩点然后考虑入度为0的且不为起点的点有几个就完事了

代码:

#include <bits/stdc++.h>
#define int long long
#define sc(a) scanf("%lld",&a)
#define scc(a,b) scanf("%lld %lld",&a,&b)
#define sccc(a,b,c) scanf("%lld %lld %lld",&a,&b,&c)
#define schar(a) scanf("%c",&a)
#define pr(a) printf("%lld",a)
#define fo(i,a,b) for(int i=a;i<b;++i)
#define re(i,a,b) for(int i=a;i<=b;++i)
#define rfo(i,a,b) for(int i=a;i>b;--i)
#define rre(i,a,b) for(int i=a;i>=b;--i)
#define prn() printf("\n")
#define prs() printf(" ")
#define mkp make_pair
#define pii pair<int,int>
#define pub(a) push_back(a)
#define pob() pop_back()
#define puf(a) push_front(a)
#define pof() pop_front()
#define fst first
#define snd second
#define frt front()
#define bak back()
#define mem0(a) memset(a,0,sizeof(a))
#define memmx(a) memset(a,0x3f3f,sizeof(a))
#define memmn(a) memset(a,-0x3f3f,sizeof(a))
#define debug
#define db double
#define yyes cout<<"YES"<<endl;
#define nno cout<<"NO"<<endl;
using namespace std;
typedef vector<int> vei;
typedef vector<pii> vep;
typedef map<int,int> mpii;
typedef map<char,int> mpci;
typedef map<string,int> mpsi;
typedef deque<int> deqi;
typedef deque<char> deqc;
typedef priority_queue<int> mxpq;
typedef priority_queue<int,vector<int>,greater<int> > mnpq;
typedef priority_queue<pii> mxpqii;
typedef priority_queue<pii,vector<pii>,greater<pii> > mnpqii;
const int maxn=5005;
const int inf=0x3f3f3f3f3f3f3f3f;
const int MOD=100000007;
const db eps=1e-10;
int qpow(int a,int b){int tmp=a%MOD,ans=1;while(b){if(b&1){ans*=tmp,ans%=MOD;}tmp*=tmp,tmp%=MOD,b>>=1;}return ans;}
int lowbit(int x){return x&-x;}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int mmax(int a,int b,int c){return max(a,max(b,c));}
int mmin(int a,int b,int c){return min(a,min(b,c));}
void mod(int &a){a+=MOD;a%=MOD;}
bool chk(int now){}
int half(int l,int r){while(l<=r){int m=(l+r)/2;if(chk(m))r=m-1;else l=m+1;}return l;}
int ll(int p){return p<<1;}
int rr(int p){return p<<1|1;}
int mm(int l,int r){return (l+r)/2;}
int lg(int x){if(x==0) return 1;return (int)log2(x)+1;}
bool smleql(db a,db b){if(a<b||fabs(a-b)<=eps)return true;return false;}
db len(db a,db b,db c,db d){return sqrt((a-c)*(a-c)+(b-d)*(b-d));}
bool isp(int x){if(x==1)return false;if(x==2)return true;for(int i=2;i*i<=x;++i)if(x%i==0)return false;return true;}
inline int read(){
    char ch=getchar();int s=0,w=1;
    while(ch<48||ch>57){if(ch=='-')w=-1;ch=getchar();}
    while(ch>=48&&ch<=57){s=(s<<1)+(s<<3)+ch-48;ch=getchar();}
    return s*w;
}
inline void write(int x){
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+48);
}

int n,m,ss,x,y;
vei g[maxn],scc[maxn],gg[maxn];
int dfn[maxn],low[maxn];
bool ins[maxn];
stack<int> s;
int timer=0,cnt=0,c[maxn];
int deg[maxn],ans=0;

void build(){
    re(i,1,n){
        fo(j,0,g[i].size()){
            if(c[i]!=c[g[i][j]]) deg[c[g[i][j]]]++;
        }
    }
    re(i,1,cnt) if(deg[i]==0&&i!=c[ss]) ans++;
}

void tarjan(int x){
    dfn[x]=low[x]=++timer;
    s.push(x),ins[x]=1;
    fo(i,0,g[x].size()){
        int y=g[x][i];
        if(!dfn[y]){
            tarjan(y);
            low[x]=min(low[x],low[y]);
        }
        else if(ins[y])
            low[x]=min(low[x],dfn[y]);
    }
    if(dfn[x]==low[x]){
        ++cnt;int y;
        do{
            y=s.top();
            s.pop();
            ins[y]=0;
            c[y]=cnt;
            scc[cnt].pub(y);
        }while(x!=y);
    }
}

signed main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0),cout.tie(0);
    cin>>n>>m>>ss;
    re(i,1,m) cin>>x>>y,g[x].pub(y);
    re(i,1,n) if(!dfn[i]) tarjan(i);
//    re(i,1,n) cout<<c[i]<<' ';cout<<endl;
    build();
    cout<<ans;
    return 0;
}
01-21 17:29
查看更多