#必须放开头,否则报错。作用:把python新版本中print_function函数的特性导入到当前版本 from __future__ import print_function import tensorflow.compat.v1 as tf#将v2版本转化成v1版本使用 tf.disable_v2_behavior() import numpy as np import matplotlib.pyplot as plt #Construct a function that adds a neural layer #inputs指输入,in_size指输入层维度,out_size指输出层维度,activation_function()指激励函数,默认None def add_layer(inputs,in_size,out_size,activation_function=None): Weights=tf.Variable(tf.random.normal([in_size,out_size]))#权重 biases=tf.Variable(tf.zeros([1,out_size])+0.1)#偏置,因为一般偏置不为0,于是人为加上0.1 Wx_plus_b=tf.matmul(inputs,Weights)+biases#tf.matmul矩阵相乘 if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs #Make up some real data #随机x_data,这里一定要定义dtype,[:,np.newaxis]指降低一个维度 x_data = np.linspace(-1,1,300,dtype=np.float32)[:,np.newaxis] #概率密度函数np.random.normal(loc,scale,size),loc指分布中心,scale指标准差(越小拟合的越好),size指类型(默认size=None) noise = np.random.normal(0,0.05,x_data.shape).astype(np.float32) #real y_data y_data = np.square(x_data) - 0.5 + noise #defind placeholder for inputs to network #此函数可以理解为形参,用于定义过程,在执行的时候再赋具体的值 xs = tf.placeholder(tf.float32,[None,1])#一定要定义tf.float32,系统不默认 ys = tf.placeholder(tf.float32,[None,1]) #add hidden layer #这里的激励函数为relu函数,指输入层一个神经元,输出层十个神经元 l1 = add_layer(xs,1,10,activation_function = tf.nn.relu) #add outputs layer #这里激励函数为None prediction = add_layer(l1,10,1,activation_function = None) #the error between real data and prediction #定义loss,指损失函数总和的平均值,注意这里必须得加上一个reduction_indices=[]。(会说明) loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1])) #这里用GradientDescentOptimizer做为优化器,就是梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #Activate sess = tf.Session()#非常重要 #定义全局初始化(两种表示方法:global_variables_initializer,initialize_all_variables) #建议用global_variables_initializer新版本 init = tf.global_variables_initializer() sess.run(init) for i in range(1000): #train,这里的feed_dict是一个字典,用于导入数据x_data和y_data sess.run(train_step,feed_dict = {xs : x_data, ys : y_data}) #每50步打印一次 if i % 50 == 0: print(sess.run(loss,feed_dict = {xs : x_data, ys : y_data}))
可视化结果
#Visualization of results fig = plt.figure()#建立一个背景 ax = fig.add_subplot(1,1,1)#建立标注 ax.scatter(x_data , y_data)#scatter指散点 plt.ion()#全局变量时,最好注释掉。作用:使图像连续 plt.show() for i in range(1000): # training sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: # to visualize the result and improvement #指没有图像就跳过(简单理解:先抹去外汇返佣线,再出现下一次线) try: ax.lines.remove(lines[0]) except Exception: pass prediction_value = sess.run(prediction, feed_dict={xs: x_data}) # plot the prediction lines = ax.plot(x_data, prediction_value, 'r-', lw=3)#红色,宽度为3 plt.pause(0.1)#指暂停几秒,作者实验表明0.1~0.3可视化效果明显 https://blog.csdn.net/qq_45603919/article/details/103331515