加入2个文件的内容:
第一个文件(包含员工姓名数据)
id,name
101,Gaurav
102,Rohit
103,Karishma
104,Darshan
105,Divya
第二个文件(包含员工部门数据)
id,dept
101,Sales
102,Research
103,NMG
104,Admin
105,HR
=========================
输出
id,name,dept
101,Gaurav,Sales
102,Rohit,Research
103,Karishma,NMG
我如何实现这种输出?
截至目前,我正在减少作为 reducer 中的随机值。
我想要按ID,名称,部门等指定顺序进行输出。
任何帮助表示赞赏。
Mapper类看起来像这样...
public class JoinMapper extends Mapper<LongWritable, Text, Text, Text> {
private Text keyEmit = new Text();
private Text valEmit = new Text();
public void map(LongWritable k, Text value, Context context) throws IOException, InterruptedException
{
String line=value.toString();
String[] words=line.split(",");
keyEmit.set(words[0]);
valEmit.set(words[1]);
context.write(keyEmit, valEmit);
}
}
reducer 类看起来像这样...
public class JoinReducer extends Reducer<Text, Text, NullWritable, Text> {
String merge = "";
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
merge = key.toString(); // 101
for(Text value : values) {
merge += "," + value.toString();
}
context.write(NullWritable.get(), new Text(merge));
}
}
驱动程序类看起来像这样...
public class JoinDriver {
public final static void main(final String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "Multiple join");
job.setJarByClass(JoinDriver.class);
// job.setMapperClass(JoinMapper.class);
job.setReducerClass(JoinReducer.class);
MultipleInputs.addInputPath(job, new Path(args[0]),
TextInputFormat.class, JoinMapper.class);
MultipleInputs.addInputPath(job, new Path(args[1]),
TextInputFormat.class, JoinMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(args[2]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
到目前为止,输出如下,我希望按其本身顺序输入ID,名称,部门。
最佳答案
您遇到的主要问题是值没有排序,因此您要对一个公用键进行分组,但是仅将值作为字符串发送并不会带来很大的帮助,因为您不知道哪个是名称,哪个是部门。
您有一些选择,所有这些都需要从映射器发送更多信息:
最快的方法是在映射器中输出该值时将一些更多信息附加到该值上(理想情况下,您实际上将使用包含两个Text对象的复合值)。
public class JoinMapperName extends Mapper<LongWritable, Text, Text, Text> {
public void map(LongWritable k, Text value, Context context)
throws IOException, InterruptedException {
String[] words = value.toString().split(",");
context.write(new Text(words[0]), new Text("name:" + words[1]));
}
}
public class JoinMapperDept extends Mapper<LongWritable, Text, Text, Text> {
public void map(LongWritable k, Text value, Context context)
throws IOException, InterruptedException {
String[] words = value.toString().split(",");
context.write(new Text(words[0]), new Text("dept:" + words[1]));
}
}
因此,现在每个数据源都有一个不同的映射器。并且您需要将 reducer 更改为以下内容:
public class JoinReducer extends Reducer<Text, Text, NullWritable, Text> {
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
String name = "";
String dept = "";
for(Text value : values) {
if (value.toString().startsWith("name")) {
name = value.toString().split(":")[1];
} else {
dept = value.toString().split(":")[1];
}
}
String merge = key + "," name + "," + dept;
context.write(NullWritable.get(), new Text(merge));
}
}
这只是有关如何实现的简单示例。希望它能给您一些有关如何执行订购的想法。