我有这个数据框:

cat_df.head()

   category depth
0   food    0.0
1   food    1.0
2   sport   1.0
3   food    3.0
4   school  0.0
5   school  0.0
6   school  1.0
...
depth = 0 代表根发布,depth > 0 是注释。

对于每个类别,我想计算根出版物的数量 ( depth=0 ) 和评论的数量 ( depth>0 )。

我使用 value_counts() 来计算唯一值:
cat_df['category'].value_counts().head(15)

category     total number
food         44062
sport        38004
school       11080
life         8810
...

我以为我可以将 ['depth'] == 0 作为数据框内的条件,但它不起作用:
cat_df[cat_df['depth'] == 0].value_counts().head(5)

如何获得 depth=0 和 depth>0 的总出现次数?

我想把它放在这样的表中:
category | total number | depth=0 | depth>0
...

最佳答案

您只能使用一个 groupby 来提高性能:

df = (cat_df['depth'].ne(0)
                     .groupby(cat_df['category'])
                     .value_counts()
                     .unstack(fill_value=0)
                     .rename(columns={0:'depth=0', 1:'depth>0'})
                     .assign(total=lambda x: x.sum(axis=1))
                     .reindex(columns=['total','depth=0','depth>0']))

print (df)
depth     total  depth=0  depth>0
category
food          3        1        2
school        3        2        1
sport         1        0        1

说明 :
  • 首先通过不相等的 depth ( Series.ne )
  • 比较 !=
  • groupby category SeriesGroupBy.value_counts
  • unstack 改造
  • Rename 列按字典
  • 通过 total
  • 创建新的 assign
  • 对于列的自定义顺序添加 reindex

  • 编辑:
    cat_df = pd.DataFrame({'category': ['food', 'food', 'sport', 'food', 'school', 'school', 'school'], 'depth': [0.0, 1.0, 1.0, 3.0, 0.0, 0.0, 1.0], 'num_of_likes': [10, 10, 10, 20, 20, 20, 20]})
    
    print (cat_df)
      category  depth  num_of_likes
    0     food    0.0            10
    1     food    1.0            10
    2    sport    1.0            10
    3     food    3.0            20
    4   school    0.0            20
    5   school    0.0            20
    6   school    1.0            20
    
    df = (cat_df['depth'].ne(0)
                         .groupby([cat_df['num_of_likes'], cat_df['category']])
                         .value_counts()
                         .unstack(fill_value=0)
                         .rename(columns={0:'depth=0', 1:'depth>0'})
                         .assign(total=lambda x: x.sum(axis=1))
                         .reindex(columns=['total','depth=0','depth>0'])
                         .reset_index()
                         .rename_axis(None, axis=1)
    )
    
    print (df)
       num_of_likes category  total  depth=0  depth>0
    0            10     food      2        1        1
    1            10    sport      1        0        1
    2            20     food      1        0        1
    3            20   school      3        2        1
    

    编辑1:
    s = cat_df.groupby('category')['num_of_likes'].sum()
    print (s)
    category
    food      40
    school    60
    sport     10
    Name: num_of_likes, dtype: int64
    
    df = (cat_df['depth'].ne(0)
                         .groupby(cat_df['category'])
                         .value_counts()
                         .unstack(fill_value=0)
                         .rename(columns={0:'depth=0', 1:'depth>0'})
                         .assign(total=lambda x: x.sum(axis=1))
                         .reindex(columns=['total','depth=0','depth>0'])
                         .reset_index()
                         .rename_axis(None, axis=1)
                         .assign(num_of_likes=lambda x: x['category'].map(s))
    )
    print (df)
      category  total  depth=0  depth>0  num_of_likes
    0     food      3        1        2            40
    1   school      3        2        1            60
    2    sport      1        0        1            10
    

    关于python - 使用条件计算 Pandas 数据框中的总出现次数,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/49878814/

    10-15 04:29