这与设置mincnt=1
不同。当单元的平均值为零时,是否可以删除有色垃圾箱?请参见下面的代码示例。我希望不要绘制1
这样的点。设置mincnt=1
将删除单元格中出现一次且均值> = 0的点
d1 = {'Size': {0: 0, 1: 0,2: 0, 3: 5, 4: 3, 5: 3, 6: 8, 7: 5, 8: 9, 9: 3, 10: 6, 11: 7, 12: 5, 13: 6, 14: 5, 15: 5, 16: 7, 17: 6, 18: 0},
'X': {0: -0.86602540400000005, 1: 0.86602540400000005, 2: 0.0, 3: -0.34641016200000002, 4: -0.28867513500000003, 5: 0.0, 6: 0.10825317499999999, 7: 0.34641016200000002, 8: 0.0, 9: -0.86602540400000005, 10: -0.43301270200000003, 11: 0.0, 12: -0.17320508100000001, 13: 0.43301270200000003, 14: 0.34641016200000002, 15: 0.34641016200000002, 16: 0.0, 17: 0.0, 18: 0.0},
'Y': {0: -0.5, 1: -0.5, 2: 1.0, 3: 0.40000000000000002, 4: -0.5, 5: 1.0, 6: 0.0625, 7: 0.40000000000000002, 8: 0.0, 9: -0.5, 10: 0.25, 11: 0.14285714300000002, 12: -0.5, 13: 0.25, 14: 0.40000000000000002, 15: 0.40000000000000002, 16: 0.14285714300000002, 17: -0.5, 18: 0.0}}
test1 = pd.DataFrame(d1)
import numpy as np
plot_format = {
"gridsize":15,
"cmap":plt.cm.YlOrRd,
#"mincnt":1,
"vmin":1,
"vmax":9,
"reduce_C_function":np.mean
}
ax = plt.subplot(111)
ax.hexbin(test1["X"], test1["Y"], C=test1.Size, **plot_format)
ax.axis([-1, 1, -0.8, 1.2])
plt.show()
最佳答案
您可以使用.get_array()
返回的matplotlib.collections.PolyCollection
对象的hexbin
方法获取每个bin的计数,然后使用该方法为色块的面部颜色设置alpha通道:
hb = ax.hexbin(test1["X"], test1["Y"], C=test1.Size, **plot_format)
# you might need to force a draw event here, otherwise `hb.get_colors()` can return
# incorrect values
ax.figure.canvas.draw()
counts = hb.get_array() # get the counts (n,)
colors = hb.get_facecolors() # get the facecolors of the patches (n, 4)
colors[:, 3] = counts > 0 # set the alpha channel to 0 where counts <= 0
hb.set_facecolors(colors) # update the facecolors of the patches
关于python - Matplotlib hexbin:如何避免显示np.mean为零的bin,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/33510632/