我在MirroredStrategy中使用GANEstimator在单个实例的多个GPU上工作。在我的情况下,input_fn是具有以下设置的tf.data.Dataset:

dataset = dataset.repeat()
dataset = dataset.shuffle(buffer_size=100)
dataset = dataset.batch(self.batch_size, drop_remainder=True)
dataset = dataset.prefetch(100)

我之所以这样问,是因为我需要手动指定诸如dataset.shard()之类的东西才能将不同的数据传递给工作人员吗?我正在研究EstimatorMirroredStrategy的代码,但是我不清楚发生了什么。从description of distributed strategies还会造成其他困惑:
MirroredStrategy: This does in-graph replication with synchronous
training on many GPUs on one machine. Essentially, we create copies of all
variables in the model's layers on each device. We then use all-reduce
to combine gradients across the devices before applying them
to the variables to keep them in sync.

CollectiveAllReduceStrategy: This is a version of MirroredStrategy
for multi-worker training.

那么MirroredStratedy是否只使用一名 worker ?我不明白我需要指定等于一个塔的容量的批处理大小,否则得到OOM。有人可以给我指出代码,并解释一下这种简单的设置如何与批处理一起工作:
def create_dataset():
    ...
    dataset = dataset.repeat()
    dataset = dataset.shuffle(buffer_size=100)
    dataset = dataset.batch(self.batch_size, drop_remainder=True)
    dataset = dataset.prefetch(100)
    return dataset



NUM_GPUS = 4
strategy = tf.contrib.distribute.MirroredStrategy(num_gpus=NUM_GPUS)

optimizer = tf.train.RMSPropOptimizer(learning_rate=0.01, use_locking=True)
optimizer_d = tf.train.RMSPropOptimizer(learning_rate=0.01, use_locking=True)

config = tf.estimator.RunConfig(save_checkpoints_steps=100,
          save_summary_steps=1, keep_checkpoint_max=50,
          train_distribute=strategy)

# I have more hooks here, just simplified to show
def get_hooks_fn(GANTrainOps):

    disjoint_train_hook_func = tfgan.get_sequential_train_hooks(
                 train_steps=tfgan.GANTrainSteps(10, 1)
                 ) # g steps, d steps
    disjoint_train_hooks = disjoint_train_hook_func(GANTrainOps)
    return [update_hook, summary_hook] + disjoint_train_hooks


# Create GAN estimator.
gan_estimator = tfgan.estimator.GANEstimator(
    model_dir = '/data/checkpoints/estimator_model',
    generator_fn = generator_fn,
    discriminator_fn = discriminator_fn,
    generator_loss_fn = generator_loss_fn,
    discriminator_loss_fn = discriminator_loss_fn,
    generator_optimizer = optimizer,
    discriminator_optimizer = optimizer_d,
    use_loss_summaries=True,
    config=config,
    get_hooks_fn=get_hooks_fn)


gan_estimator.train(input_fn=create_dataset, steps=10000)

谢谢!

MirroredStrategy的代码包含:

1)怪异的措辞:



2)



默认情况下,此参数为False。

编辑:

到目前为止,我发现一段时间后 tf.estimator.train() 指向似乎是strategy.make_input_fn_iterator()的内容:
def _get_iterator_from_input_fn(self, input_fn, mode, distribution=None):
    if distribution is not None:
      iterator = distribution.make_input_fn_iterator(
          lambda _: self._call_input_fn(input_fn, mode))
      input_hooks = [
          estimator_util.DistributedIteratorInitializerHook(iterator)]
    else:
      result = self._call_input_fn(input_fn, mode)
      iterator = result.make_initializable_iterator()
      input_hooks = [estimator_util._DatasetInitializerHook(iterator)]
return iterator, input_hooks
make_input_fn_iterator()
但是它已从MirroredStrategy的代码中删除,并且不再存在!我不明白它是如何工作的以及数据集实际上是在哪里拆分的。

EDIT2:我无法使用grep在tensorflow 1.12.0发行版中找到make_input_fn_iterator行。似乎代码中完全没有它。

最佳答案

好的,花了一些时间研究github后,我发现它已经与我的tf 1.12.0不同。因此,进入1.12.0的本地文件可以得到:

GANEstimator继承了tf.python.estimator.Estimator

Estimator.init():

# The distribute field contains an instance of DistributionStrategy.
    self._train_distribution = self._config.train_distribute

那么向下的路径是:
tf.contrib.gan.GANEstimator -> tf.python.estimator.Estimator.train() -->
tf.python.estimator.Estimator._train_model(input_fn, hooks, saving_listeners) -->
._train_model_distributed(input_fn, hooks, saving_listeners) -->
._get_iterator_from_input_fn(input_fn, model_fn_lib.ModeKeys.TRAIN, self._train_distribution) -->
distribution.distribute_dataset(lambda: self._call_input_fn(input_fn, mode))

在我的情况下需要MirrorredStrategy.distribute_dataset():
def distribute_dataset(self, dataset_fn):
    if self._cluster_spec:
      return values.MultiWorkerDataset(
          partial(self._call_dataset_fn, dataset_fn), self._worker_device_map,
          self._prefetch_on_device, self._auto_shard_dataset)
    else:
      return values.PerDeviceDataset(
          self._call_dataset_fn(dataset_fn), self._devices,
          self._prefetch_on_device)
tensorflow/python/training/distribute.py:
  def _call_dataset_fn(self, dataset_fn):
    result = dataset_fn()
    if not isinstance(result, dataset_ops.Dataset):
      raise ValueError(
          "dataset_fn() must return a tf.data.Dataset when using a "
          "DistributionStrategy.")
    return result


我假设使用PerDeviceDataset,所以最后我在values.py中找到了这两个类:
class PerDeviceDataset(object):
  """Like `tf.data.Dataset` split devices, producing `PerDevice` data."""

  def __init__(self, dataset, devices, prefetch_on_device=None):
    self._devices = devices

    # Default to using prefetching in graph mode, unless specified.
    # TODO(priyag): Enable prefetching in eager mode.
    self._prefetch_on_device = prefetch_on_device
    if self._prefetch_on_device is None:
      self._prefetch_on_device = not context.executing_eagerly()
    assert not (self._prefetch_on_device and context.executing_eagerly()), (
        "Prefetching is only supported in graph mode currently")

    if self._prefetch_on_device:
      self._dataset = dataset.apply(
          prefetching_ops_v2.prefetch_to_devices(self._devices))
    else:
      # TODO(priyag): If dropping remainder is not appropriate, find another
      # approach to distributing the dataset when not possible to divide evenly.
      # Possibly not an issue when we start using PartitionedDataset.
      self._dataset = dataset.batch(len(devices), drop_remainder=True)

  def make_one_shot_iterator(self):
    """Get a one time use iterator for the distributed PerDeviceDataset."""
    dataset_iterator = self._dataset.make_one_shot_iterator()
    return PerDeviceDataIterator(dataset_iterator, self._devices,
                                 self._prefetch_on_device)

  def make_initializable_iterator(self):
    """Get an initializable iterator for the distributed PerDeviceDataset."""
    dataset_iterator = self._dataset.make_initializable_iterator()
    return PerDeviceDataIterator(dataset_iterator, self._devices,
                                 self._prefetch_on_device)


class PerDeviceDataIterator(object):
  """An iterator (like `tf.data.Iterator`) into a `PerDeviceDataset`."""

  def __init__(self, iterator, devices, prefetch_on_device=None):
    self._iterator = iterator
    self._devices = devices
    self._prefetch_on_device = prefetch_on_device

  @property
  def initializer(self):
    return self._iterator.initializer

  def get_next(self, name=None):
    """Scatter the input across devices."""
    if self._prefetch_on_device:
      data_list = self._iterator.get_next(name=name)
      index = dict(zip(self._devices, data_list))
    else:
      batch = self._iterator.get_next(name=name)
      index = {}
      def get_ith(i):
        return lambda x: x[i]

      for i, d in enumerate(self._devices):
        index[d] = nest.map_structure(get_ith(i), batch)
        if context.executing_eagerly():
          with ops.device(d):
            index[d] = nest.map_structure(array_ops.identity, index[d])

    return regroup(index)

因此,据我了解,首先,我的dataset_fn()函数仅被调用来获取数据集对象,然后在其之上应用一批具有GPU数量的大小。该批次的元素必须是我在dataset_fn()内的数据集初始化中定义的实际批次,已分配给不同的设备。

关于tensorflow - 使用MirroredStrategy时,tensorflow Estimator是否为工作人员分配了不同的批次?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54327610/

10-12 21:26