我有一个使用tflearn库训练的模型,我使用深度神经网络(DNN)来做到这一点。我们可以在这里看到更多(http://tflearn.org/models/dnn/)
下面是我的代码:
# Build neural network
net = tflearn.input_data(shape=[None, len(train_x[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(train_y[0]), activation='softmax')
net = tflearn.regression(net)
# Define model and setup tensorboard
model = tflearn.DNN(net, tensorboard_dir='tflearn_logs', best_val_accuracy=0.91)
# Start training (apply gradient descent algorithm)
model.fit(train_x, train_y, n_epoch=350, batch_size=8, show_metric=True)
model.save('model.tflearn')
当我运行该代码时,直到纪元结束,我都会得到一些类似的值:
Training Step: 5083 | total loss: 0.31890 | time: 0.302s
| Adam | epoch: 085 | loss: 0.31890 - acc: 0.8948 -- iter: 344/474
Training Step: 20999 | total loss: 0.08880 | time: 0.366s
....
Training Step: 11279 | total loss: 0.10708 | time: 0.419s
| Adam | epoch: 188 | loss: 0.10708 - acc: 0.9556 -- iter: 472/474
Training Step: 11280 | total loss: 0.12302 | time: 0.425s
| Adam | epoch: 188 | loss: 0.12302 - acc: 0.9351 -- iter: 474/474
....
| Adam | epoch: 350 | loss: 0.08880 - acc: 0.9503 -- iter: 472/474
Training Step: 21000 | total loss: 0.08863 | time: 0.373s
| Adam | epoch: 350 | loss: 0.08863 - acc: 0.9553 -- iter: 474/474
任何人都知道每次损失和准确性达到特定值时如何停止训练?假设损失0.05,准确性为0.95。
提前致谢
最佳答案
通过作为fit方法的参数提供的回调实例使用Early Stopping,如下所示:
http://mckinziebrandon.me/TensorflowNotebooks/2016/11/20/early-stopping.html
这样的事情应该在准确性达到0.95时停止训练
class EarlyStoppingCallback(tflearn.callbacks.Callback):
def __init__(self, val_acc_thresh):
""" Note: We are free to define our init function however we please. """
self.val_acc_thresh = val_acc_thresh
def on_epoch_end(self, training_state):
""" """
# Apparently this can happen.
if training_state.val_acc is None: return
if training_state.val_acc > self.val_acc_thresh:
raise StopIteration
# Initializae our callback.
early_stopping_cb = EarlyStoppingCallback(val_acc_thresh=0.95)
# Give it to our trainer and let it fit the data.
trainer.fit(feed_dicts={X: trainX, Y: trainY},
val_feed_dicts={X: testX, Y: testY},
n_epoch=2,
show_metric=True, # Calculate accuracy and display at every step.
snapshot_epoch=False,
callbacks=early_stopping_cb)
关于python - 当达到特定的损失和准确性值时,如何停止tflearn训练时期或迭代?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54108317/