我正在尝试使用MNIST数字Reducing the dimensionality of data with neural networks的改编版本来重新生成olivetti face dataset中自动编码matlab code的结果,但是遇到了一些困难。看来,无论我对历时,速率或动量进行多少微调,堆叠的RBM都将进入微调阶段,并且会产生大量误差,因此在微调阶段无法做出很大的改进。我还在另一个实值数据集上遇到了类似的问题。
对于第一层,我使用的是学习率较低的RBM(如本文所述),并且
negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);
我完全有信心按照supporting material中的说明进行操作,但是无法实现正确的错误。
我有什么想念的吗?请参阅下面用于实值可见单位RBM的代码以及整个深度培训。其余代码可以在here中找到。
rbmvislinear.m:
epsilonw = 0.001; % Learning rate for weights
epsilonvb = 0.001; % Learning rate for biases of visible units
epsilonhb = 0.001; % Learning rate for biases of hidden units
weightcost = 0.0002;
initialmomentum = 0.5;
finalmomentum = 0.9;
[numcases numdims numbatches]=size(batchdata);
if restart ==1,
restart=0;
epoch=1;
% Initializing symmetric weights and biases.
vishid = 0.1*randn(numdims, numhid);
hidbiases = zeros(1,numhid);
visbiases = zeros(1,numdims);
poshidprobs = zeros(numcases,numhid);
neghidprobs = zeros(numcases,numhid);
posprods = zeros(numdims,numhid);
negprods = zeros(numdims,numhid);
vishidinc = zeros(numdims,numhid);
hidbiasinc = zeros(1,numhid);
visbiasinc = zeros(1,numdims);
sigmainc = zeros(1,numhid);
batchposhidprobs=zeros(numcases,numhid,numbatches);
end
for epoch = epoch:maxepoch,
fprintf(1,'epoch %d\r',epoch);
errsum=0;
for batch = 1:numbatches,
if (mod(batch,100)==0)
fprintf(1,' %d ',batch);
end
%%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data = batchdata(:,:,batch);
poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1)));
batchposhidprobs(:,:,batch)=poshidprobs;
posprods = data' * poshidprobs;
poshidact = sum(poshidprobs);
posvisact = sum(data);
%%%%%%%%% END OF POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
poshidstates = poshidprobs > rand(numcases,numhid);
%%%%%%%%% START NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);% + randn(numcases,numdims) if not using mean
neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1)));
negprods = negdata'*neghidprobs;
neghidact = sum(neghidprobs);
negvisact = sum(negdata);
%%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
err= sum(sum( (data-negdata).^2 ));
errsum = err + errsum;
if epoch>5,
momentum=finalmomentum;
else
momentum=initialmomentum;
end;
%%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
vishidinc = momentum*vishidinc + ...
epsilonw*( (posprods-negprods)/numcases - weightcost*vishid);
visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact);
hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact);
vishid = vishid + vishidinc;
visbiases = visbiases + visbiasinc;
hidbiases = hidbiases + hidbiasinc;
%%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
fprintf(1, '\nepoch %4i error %f \n', epoch, errsum);
end
dofacedeepauto.m:
clear all
close all
maxepoch=200; %In the Science paper we use maxepoch=50, but it works just fine.
numhid=2000; numpen=1000; numpen2=500; numopen=30;
fprintf(1,'Pretraining a deep autoencoder. \n');
fprintf(1,'The Science paper used 50 epochs. This uses %3i \n', maxepoch);
load fdata
%makeFaceData;
[numcases numdims numbatches]=size(batchdata);
fprintf(1,'Pretraining Layer 1 with RBM: %d-%d \n',numdims,numhid);
restart=1;
rbmvislinear;
hidrecbiases=hidbiases;
save mnistvh vishid hidrecbiases visbiases;
maxepoch=50;
fprintf(1,'\nPretraining Layer 2 with RBM: %d-%d \n',numhid,numpen);
batchdata=batchposhidprobs;
numhid=numpen;
restart=1;
rbm;
hidpen=vishid; penrecbiases=hidbiases; hidgenbiases=visbiases;
save mnisthp hidpen penrecbiases hidgenbiases;
fprintf(1,'\nPretraining Layer 3 with RBM: %d-%d \n',numpen,numpen2);
batchdata=batchposhidprobs;
numhid=numpen2;
restart=1;
rbm;
hidpen2=vishid; penrecbiases2=hidbiases; hidgenbiases2=visbiases;
save mnisthp2 hidpen2 penrecbiases2 hidgenbiases2;
fprintf(1,'\nPretraining Layer 4 with RBM: %d-%d \n',numpen2,numopen);
batchdata=batchposhidprobs;
numhid=numopen;
restart=1;
rbmhidlinear;
hidtop=vishid; toprecbiases=hidbiases; topgenbiases=visbiases;
save mnistpo hidtop toprecbiases topgenbiases;
backpropface;
谢谢你的时间
最佳答案
愚蠢的我,我忘了更改反向传播微调脚本(backprop.m)。必须将输出层(重构面的位置)更改为实值单位。 IE。
dataout = w7probs*w8;
关于matlab - (RBM)的实值输入深度置信网络存在的问题,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/3048170/