我试图在我的数据中加入指数定律。我的样本解释起来相当复杂,所以为了便于理解和再现,我要说:这两个变量都是(x,y)floatcontinuous0<=x<=100

from scipy.optimize import curve_fit
import numpy
import matplotlib.pyplot as plt

#ydata=[...] is my list with y values, which contains 0 values
#xdata=[...] is my list with x values

transf_y=[]
for i in range(len(ydata)):
    transf_y.append(ydata[i]+0.00001) #Adding something to avoid zero values

x=numpy.array(xdata,dtype=float)
y=numpy.array(transf_y,dtype=float)

def func(x, a, c, d):
    return a * numpy.exp(-c*x)+d

popt, pcov = curve_fit(func, x, y,p0 = (1, 1e-6, 1))

print ("a = %s , c = %s, d = %s" % (popt[0], popt[1], popt[2]))

xx = numpy.linspace(300, 6000, 1000)
yy = func(xx, *popt)

plt.plot(x,y,label='Original Data')
plt.plot(xx, yy, label="Fitted Curve")

plt.legend(loc='upper left')
plt.show()

现在我的拟合曲线看起来不像是指数拟合曲线相反,它看起来像是一条移动平均曲线,就好像这条曲线是作为趋势线添加到Excel中一样有什么问题吗如有必要,我会找到一种方法,使数据集可用,使示例重现。
这就是我从代码中得到的(我甚至不知道为什么我在图例中得到了三个元素,而只有两个元素被绘制出来,至少很明显):
python - scipy.optimize.curve_fit的图形错误(类似于移动平均值)-LMLPHP

最佳答案

python - scipy.optimize.curve_fit的图形错误(类似于移动平均值)-LMLPHP很多事情:
你的图描绘了两次原始数据,没有可识别的拟合数据
你的数据似乎没有排序,我想这就是为什么你得到zickzack行
在您的示例中,您的预测图将在300到6000之间,而原始数据0除此之外,您的代码或多或少是正确的并且可以工作。

from scipy.optimize import curve_fit
import numpy
import matplotlib.pyplot as plt

xdata=[100.0, 0.0, 90.0, 20.0, 80.0] #is my list with y values, which contains 0 values - edit, you need some raw data which you fit, I inserted some
ydata=[0.001, 1.0, 0.02, 0.56, 0.03] #is my list with x values

transf_y=[]
for i in range(len(ydata)):
    transf_y.append(ydata[i]+0.00001) #Adding something to avoid zero values

x1=numpy.array(xdata,dtype=float)
y1=numpy.array(transf_y,dtype=float)

def func(x, a, c, d):
    return a * numpy.exp(-c*x)+d

popt, pcov = curve_fit(func, x1, y1,p0 = (1, 1e-6, 1))

print ("a = %s , c = %s, d = %s" % (popt[0], popt[1], popt[2]))

#ok, sorting your data
pairs = []
for i, j in zip(x1, y1):
    pairs.append([i,j])

sortedList = sorted(pairs, key = lambda x:x[0])
sorted_x = numpy.array(sortedList)[:,0]
sorted_y = numpy.array(sortedList)[:,1]


#adjusting interval to the limits of your raw data
xx = numpy.linspace(0, 100.0, 1000)
yy = func(xx, *popt)


#and  everything looks fine
plt.plot(sorted_x,sorted_y, 'o',label='Original Data')
plt.plot(xx,yy,label='Fitted Data')

plt.legend(loc='upper left')
plt.show()

10-07 23:41