这是我的df的简化示例:
ds = pd.DataFrame(np.abs(randn(3, 4)), index=[1,2,3], columns=['A','B','C','D'])
ds
A B C D
1 1.099679 0.042043 0.083903 0.410128
2 0.268205 0.718933 1.459374 0.758887
3 0.680566 0.538655 0.038236 1.169403
我想按行对列中的数据求和:
ds['sum']=ds.sum(axis=1)
ds
A B C D sum
1 0.095389 0.556978 1.646888 1.959295 4.258550
2 1.076190 2.668270 0.825116 1.477040 6.046616
3 0.245034 1.066285 0.967124 0.791606 3.070049
现在,我的问题来了!我想创建4个新列,并从每一行的总和中计算百分比值。因此,第一个新列中的第一个值应该是(0.095389/4.258550),第二个新列中的第一个值(0.556978/4.258550)...依此类推...
请帮忙
最佳答案
您可以像这样手动轻松地为每个列执行此操作:
df['A_perc'] = df['A']/df['sum']
如果要一步一步对所有列执行此操作,则可以使用
div
方法(http://pandas.pydata.org/pandas-docs/stable/basics.html#matching-broadcasting-behavior):ds.div(ds['sum'], axis=0)
如果要一步将其添加到同一数据框中,请执行以下操作:
>>> ds.join(ds.div(ds['sum'], axis=0), rsuffix='_perc')
A B C D sum A_perc B_perc \
1 0.151722 0.935917 1.033526 0.941962 3.063127 0.049532 0.305543
2 0.033761 1.087302 1.110695 1.401260 3.633017 0.009293 0.299283
3 0.761368 0.484268 0.026837 1.276130 2.548603 0.298739 0.190013
C_perc D_perc sum_perc
1 0.337409 0.307517 1
2 0.305722 0.385701 1
3 0.010530 0.500718 1
关于python - Pandas 数据框创建新列并填充来自同一df的计算值,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/18504967/