我有一个多级索引熊猫数据框。我想创建一个新列,其中该列中的值基于条件。此条件基于对该索引的另一列求和,然后将其减半。如果该值小于存储在单独列表中的最后一个值,则新列中的值将与数据框中的另一列具有相同的值。如果不满足此条件,则新列中的所有值均应为0
。
使用这个问题来尝试实现此Sum columns by level in a Multi-Index DataFrame,我使用了np.where
和df.sum(level=0, axis=1)
的组合,但这会导致以下错误:
ValueError: operands could not be broadcast together with shapes (2,8) (21,) ()
这是我的数据框和到目前为止使用的代码的示例:
import pandas as pd
import numpy as np
balance = [1400]
data = {'EVENT_ID': [112335580,112335580,112335580,112335580,112335580,112335580,112335580,112335580, 112335582,
112335582,112335582,112335582,112335582,112335582,112335582,112335582,112335582,112335582,
112335582,112335582,112335582],
'SELECTION_ID': [6356576,2554439,2503211,6297034,4233251,2522967,5284417,7660920,8112876,7546023,8175276,8145908,
8175274,7300754,8065540,8175275,8106158,8086265,2291406,8065533,8125015],
'Pot_Bet': [3.236731,2.416966,2.278365,2.264023,2.225353,2.174407, 2.141420,2.122386,2.832997,2.411094,
2.167218,2.138972,2.132137,2.128341,2.116338,2.115239,2.115123,2.114284362,2.113420,
2.113186,2.112729],
'Liability':[3.236731, 2.416966, 12.245492, 12.795112, 15.079176, 23.336171, 50.741182, 571.003118, 2.832997, 6.691736, 15.808607, 27.935834, 35.954927, 43.275250, 147.165537, 193.017915, 199.622454, 265.809019, 405.808678, 473.926781, 706.332594]}
df = pd.DataFrame(data, columns=['EVENT_ID', 'SELECTION_ID', 'Pot_Bet','WIN_LOSE'])
df.set_index(['EVENT_ID', 'SELECTION_ID'], inplace=True) #Selecting columns for indexing
df['Bet'] = np.where(df.sum(level = 0) > 0.5*balance[-1], df['Pot_Bet'], 0)
这将导致前面所述的错误。
对于索引
112335580
,新列应具有与'Pot_Bet'
相同的值。对于索引112335582
,新列的值应为0
。干杯,
沙
最佳答案
问题是,如果使用df.sum(level=0)
就像df.groupby(level = 0).sum()
一样-按MultiIndex
的第一级进行聚合。
解决方案是将GroupBy.transform
用于Series
,其大小与原始DataFrame
相同:
df['Bet'] = np.where(df.groupby(level = 0)['Pot_Bet'].transform('sum') > 0.5*balance[-1],
df['Pot_Bet'], 0)
详情:
print (df.groupby(level = 0)['Pot_Bet'].transform('sum'))
EVENT_ID SELECTION_ID
112335580 6356576 18.859651
2554439 18.859651
2503211 18.859651
6297034 18.859651
4233251 18.859651
2522967 18.859651
5284417 18.859651
7660920 18.859651
112335582 8112876 28.611078
7546023 28.611078
8175276 28.611078
8145908 28.611078
8175274 28.611078
7300754 28.611078
8065540 28.611078
8175275 28.611078
8106158 28.611078
8086265 28.611078
2291406 28.611078
8065533 28.611078
8125015 28.611078
Name: Pot_Bet, dtype: float64
如果仅需要使用工作列列,则可以通过列名为
Series
选择它:print (df['Pot_Bet'].sum(level=0))
EVENT_ID
112335580 18.859651
112335582 28.611078
Name: Pot_Bet, dtype: float64
print (df.groupby(level = 0)['Pot_Bet'].sum())
EVENT_ID
112335580 18.859651
112335582 28.611078
Name: Pot_Bet, dtype: float64
关于python - 如何使用多级索引 Pandas 数据框中一列的总和作为新列中值的条件,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/55431600/