我们刚刚开始使用CNTK创建二进制分类器的项目。
我们的数据集如下所示:
|attribs 1436000 24246.3124164245 |isMatch 1
|attribs 535000 21685.9351529239 |isMatch 1
|attribs 729000 8988.24232231086 |isMatch 1
|attribs 436000 4787.7521169184 |isMatch 1
|attribs 110000 38236394.456649 |isMatch 0
|attribs 808000 39512500.9870238 |isMatch 0
|attribs 108000 28432968.9161523 |isMatch 0
|attribs 816000 39512231.5629576 |isMatch 0
我们正在尝试确定校车停靠点是否与计划的路线匹配。第一个值是计划停靠点与实际停靠点之间的增量时间(以毫秒为单位),第二个值是计划位置与实际停靠点之间的增量距离(毫米)。
我遇到的问题是(可能是对如何使用CNTK的基本误解),无论我如何调整数据,隐藏节点,批处理大小或任何其他旋钮,我都将继续获得几乎相同的结果。我可以估算出最荒谬的输入,并且不断得到1.00。
如何修改数据或模型以获得更准确的结果?
完整的代码在这里:
import numpy as np
import cntk as C
from cntk import Trainer # to train the NN
from cntk.learners import sgd, learning_rate_schedule, \
UnitType
from cntk.ops import * # input_variable() def
from cntk.logging import ProgressPrinter
from cntk.initializer import glorot_uniform
from cntk.layers import default_options, Dense
from cntk.io import CTFDeserializer, MinibatchSource, \
StreamDef, StreamDefs, INFINITELY_REPEAT
def my_print(arr, dec):
# print an array of float/double with dec decimals
fmt = "%." + str(dec) + "f" # like %.4f
for i in range(0, len(arr)):
print(fmt % arr[i] + ' ', end='')
print("\n")
def create_reader(path, is_training, input_dim, output_dim):
return MinibatchSource(CTFDeserializer(path, StreamDefs(
features=StreamDef(field='attribs', shape=input_dim,
is_sparse=False),
labels=StreamDef(field='isMatch', shape=output_dim,
is_sparse=False)
)), randomize=is_training,
max_sweeps=INFINITELY_REPEAT if is_training else 1)
def save_weights(fn, ihWeights, hBiases,
hoWeights, oBiases):
f = open(fn, 'w')
for vals in ihWeights:
for v in vals:
f.write("%s\n" % v)
for v in hBiases:
f.write("%s\n" % v)
for vals in hoWeights:
for v in vals:
f.write("%s\n" % v)
for v in oBiases:
f.write("%s\n" % v)
f.close()
def do_demo():
# create NN, train, test, predict
input_dim = 2
hidden_dim = 30
output_dim = 1
train_file = "trainData_cntk.txt"
test_file = "testData_cntk.txt"
input_Var = C.ops.input_variable(input_dim, np.float32)
label_Var = C.ops.input_variable(output_dim, np.float32)
print("Creating a 2-21 tanh softmax NN for Stop data ")
with default_options(init=glorot_uniform()):
hLayer = Dense(hidden_dim, activation=C.ops.tanh,
name='hidLayer')(input_Var)
oLayer = Dense(output_dim, activation=C.ops.softmax,
name='outLayer')(hLayer)
nnet = oLayer
# ----------------------------------
print("Creating a cross entropy mini-batch Trainer \n")
ce = C.cross_entropy_with_softmax(nnet, label_Var)
pe = C.classification_error(nnet, label_Var)
fixed_lr = 0.05
lr_per_batch = learning_rate_schedule(fixed_lr,
UnitType.minibatch)
learner = C.sgd(nnet.parameters, lr_per_batch)
trainer = C.Trainer(nnet, (ce, pe), [learner])
max_iter = 5000 # 5000 maximum training iterations
batch_size = 100 # mini-batch size 5
progress_freq = 1000 # print error every n minibatches
reader_train = create_reader(train_file, True, input_dim,
output_dim)
my_input_map = {
input_Var: reader_train.streams.features,
label_Var: reader_train.streams.labels
}
pp = ProgressPrinter(progress_freq)
print("Starting training \n")
for i in range(0, max_iter):
currBatch = reader_train.next_minibatch(batch_size,
input_map=my_input_map)
trainer.train_minibatch(currBatch)
pp.update_with_trainer(trainer)
print("\nTraining complete")
# ----------------------------------
print("\nEvaluating test data \n")
reader_test = create_reader(test_file, False, input_dim,
output_dim)
numTestItems = 200
allTest = reader_test.next_minibatch(numTestItems,
input_map=my_input_map)
test_error = trainer.test_minibatch(allTest)
print("Classification error on the test items = %f"
% test_error)
# ----------------------------------
# make a prediction for an unknown flower
# first train versicolor = 7.0,3.2,4.7,1.4,0,1,0
unknown = np.array([[10000002000, 24275329.7232828]], dtype=np.float32)
print("\nPredicting Stop Match for input features: ")
my_print(unknown[0], 1) # 1 decimal
predicted = nnet.eval({input_Var: unknown})
print("Prediction is: ")
my_print(predicted[0], 3) # 3 decimals
# ---------------------------------
print("\nTrained model input-to-hidden weights: \n")
print(hLayer.hidLayer.W.value)
print("\nTrained model hidden node biases: \n")
print(hLayer.hidLayer.b.value)
print("\nTrained model hidden-to-output weights: \n")
print(oLayer.outLayer.W.value)
print("\nTrained model output node biases: \n")
print(oLayer.outLayer.b.value)
save_weights("weights.txt", hLayer.hidLayer.W.value,
hLayer.hidLayer.b.value, oLayer.outLayer.W.value,
oLayer.outLayer.b.value)
return 0 # success
def main():
print("\nBegin Stop Match \n")
np.random.seed(0)
do_demo() # all the work is done in do_demo()
if __name__ == "__main__":
main()
# end script
最佳答案
我认为问题在于您的输出层正在使用softmax()
激活函数,但是随后您正在使用cross_entropy_with_softmax()
作为损失函数。因此,在训练时,您的结果将被评估为softmax。
在输出层中使用activation=None
,然后查看培训如何进行。
在您的预测代码中,显然您将必须将softmax应用于评估,因此类似C.ops.softmax(nnet).eval({input_Var: unknown})
。回想一下我做的一个示例,我使用了C.softmax
,但这与我编写该示例与使用的CNTK版本相比,可能是命名空间的差异。
PS:如果您正在执行二进制分类,那么您实际上不需要使用softmax,因为它确实适用于多类分类问题。它仍然应该在二进制情况下工作。
PPS:在训练过程中,每次最小批量后打印出损失将很有用,这样您就可以看到梯度下降是否正在收敛。我想您会在当前模型中发现并非如此。
PPS:我只是注意到您的变量output_dim
设置为1。我不知道在这种情况下使用softmax会得到什么行为。通常,softmax将应用于一个热编码输出,因此在二进制情况下,您将有两个输出,它们给出正确结果为零或一的可能性。同样,您显然需要在培训之前对您的基本事实进行一次热编码。不能肯定地告诉您您的方法是否有效,但是看起来很糟糕。
关于machine-learning - CNTK二进制分类器,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/45603477/