前言
民意测验机构盖洛普从2012年起,每年都会在联合国计划下发布《世界幸福指数报告》,报告会综合两年内150多个国家的国民对其所处社会、城市和自然环境等因素进行评价后,再根据他们所感知的幸福程度对国家进行排名。
《世界幸福指数报告》的编撰主要依赖于对150多个国家的1000多人提出一个简单的主观性问题:“如果有一个从0分到10分的阶梯,顶层的10分代表你可能得到的最佳生活,底层的0分代表你可能得到的最差生活。你觉得你现在在哪一层?”
最近看到的一个项目,非常的有意思。接下来我将用python带你来分析一下世界各国的幸福指数排名,以及和幸福有关系的因素。
数据解释
关键字段含义解释:
- social_support:社会支持(客观上物质上的援助和直接服务;主观上指个体感到在社会中被尊重、被支持和被理解的情绪体验和满意程度。)
数据准备
pip install -r requirement.txt
编码
import numpy as np
import pandas as pd
import os,sys
import matplotlib.pyplot as plt
import seaborn as sns
import plotly as py
import plotly.graph_objs as go
import plotly.express as px
from plotly.offline import init_notebook_mode, iplot, plot
#数列的路径
file_path = os.path.dirname(os.path.abspath(__file__))
# 读入数据
df_2015 = pd.read_csv(f'{file_path}/2015.csv')
df_2016 = pd.read_csv(f'{file_path}/2016.csv')
df_2017 = pd.read_csv(f'{file_path}/2017.csv')
df_2018 = pd.read_csv(f'{file_path}/2018.csv')
df_2019 = pd.read_csv(f'{file_path}/2019.csv')
# 新增列-年份
df_2015["year"] = str(2015)
df_2016["year"] = str(2016)
df_2017["year"] = str(2017)
df_2018["year"] = str(2018)
df_2019["year"] = str(2019)
# 合并数据
df_all = df_2015.append([df_2016, df_2017, df_2018, df_2019], sort=False)
df_all.drop('Unnamed: 0', axis=1, inplace=True)
df_all.head()
data = dict(type='choropleth',
locations=df_2019['region'],
locationmode='country names',
colorscale='RdYlGn',
z=df_2019['happiness'],
text=df_2019['region'],
colorbar={'title': '幸福指数'})
layout = dict(title='2019年世界幸福指数地图',
geo=dict(showframe=True, projection={'type': 'azimuthal equal area'}))
choromap3 = go.Figure(data=[data], layout=layout)
plot(choromap3, filename=f'{file_path}/世界幸福地图.html')
整体来看,北欧的国家幸福指数较高,如冰岛、丹麦、挪威、芬兰;东非和西非的国家幸福指数较低,如多哥、布隆迪、卢旺达和坦桑尼亚。
# 合并数据
rank_top10 = df_2019.head(10)[['rank', 'region', 'happiness']]
last_top10 = df_2019.tail(10)[['rank', 'region', 'happiness']]
rank_concat = pd.concat([rank_top10, last_top10])
# 条形图
fig = px.bar(rank_concat,
x="region",
y="happiness",
color="region",
title="2019年全球最幸福和最不幸福的国家")
plot(fig, filename=f'{file_path}/2019世界幸福国家排行Top10和Last10.html')
2019年报告,芬兰连续两年被评为“全球最幸福国家”。丹麦、挪威、冰岛、荷兰进入前五名,对比2018年报告,中国从86名下降到93名。
# 散点图
fig = px.scatter(df_all, x='gdp_per_capita',
y='happiness',
facet_row='year',
color='year',
trendline='ols'
)
fig.update_layout(height=800, title_text='人均GDP和幸福指数')
plot(fig, filename=f'{file_path}/GDP和幸福得分.html')
人均GDP与幸福得分呈高度线性正相关关系,GDP越高的国家,幸福水平相对越高。
# 散点图
fig = px.scatter(df_all, x='healthy_life_expectancy',
y='happiness',
facet_row='year',
color='year',
trendline='ols'
)
fig.update_layout(
height=800, title_text='健康预期寿命和幸福指数')
plot(fig, filename=f'{file_path}/健康预期寿命和幸福得分.html')
健康预期寿命与幸福得分呈高度线性正相关关系,健康预期寿命越高的国家,幸福水平相对越高。
#散点图
fig = px.scatter(df_all, x='freedom_to_life_choise',
y='happiness',
facet_row='year',
color='year',
trendline='ols'
)
fig.update_layout(
height=800, title_text='自由权和幸福指数')
plot(fig, filename=f'{file_path}/自由权和幸福得分.html')
自由权与幸福得分呈高度线性正相关关系,自由权越高的国家,幸福水平相对越高。
#散点图
fig = px.scatter(df_all, x='corruption_perceptions',
y='happiness',
facet_row='year',
color='year',
trendline='ols'
)
fig.update_layout(
height=800, title_text='清廉指数和幸福指数')
plot(fig, filename=f'{file_path}/清廉指数和幸福得分.html')
清廉指数与幸福得分呈高度线性正相关关系,清廉指数越高的国家,幸福水平相对越高。
#散点图
fig = px.scatter(df_all, x='generosity',
y='happiness',
facet_row='year',
color='year',
trendline='ols'
)
fig.update_layout(
height=800, title_text='慷慨程度和幸福指数')
plot(fig, filename=f'{file_path}/慷慨程度和幸福得分.html')
慷慨程度与幸福得分呈高度线性正相关关系,慷慨程度越高的国家,幸福水平相对越高。
#散点图
fig = px.scatter(df_all, x='social_support',
y='happiness',
facet_row='year',
color='year',
trendline='ols'
)
fig.update_layout(
height=800, title_text='社会援助和幸福指数')
plot(fig, filename=f'{file_path}/社会援助和幸福得分.html')
总结
我们可以得出以下结论:
从影响因素相关图可以看出,在影响幸福得分的因素中,GDP、社会支持、健康预期寿命呈现高度相关,自由权呈现中度相关,国家的廉政水平呈现低度相关,慷慨程度则呈现极低的相关性;
GDP与健康预期寿命、社会支持之间存在高度相关。说明GDP高的国家,医疗水平和社会福利较为完善,人民的预期寿命也会越高;
健康预期寿命与社会支持之间存在中度相关性。