我有一个相当简单的代码块,我想提高其性能。它由一个 for
块组成,该块使用 np.where() 来查找数组中整数的索引。
下面的代码有效,但我觉得使用 for
将元素添加到空列表并不是解决此问题的最佳方法。
该块由 MCMC 使用,因此它被执行了数百万次。小改进变成大改进。这可以提高效率吗?
import numpy as np
N = 20
# Integers from 1 to N
ran_indexes = np.random.randint(1, N, 1000)
# Number of integers to remove
rm_number = np.random.randint(0, 100, N)
# Better performance for this block?
# For each integer from 1 to N, keep only 'd' indexes of 'ran_indexes' that
# contain that integer, where 'd' is the ith element in 'rm_number'
new_indexes = []
for i, d in enumerate(rm_number):
new_indexes += list(np.where(ran_indexes == i + 1)[0][:d])
最佳答案
列表连接 +=
很慢,因为它们每次都需要一个全新的列表。更常见的是,在迭代构建数组时,我们使用列表追加,它是就地的,并且每次只将元素添加到列表中。
In [45]:
...: new_indexes = []
...: for i, d in enumerate(rm_number):
...: new_indexes.append(np.where(ran_indexes == i + 1)[0][:d])
...:
In [46]: new_indexes
Out[46]:
[array([ 5, 96, 143, 150, 154, 175]),
array([ 14, 22, 26, 28, 32, 38, 46, 54, 70, 205, 218, 242, 248,
254, 271, 318, 344, 352, 357, 393, 419, 437, 448, 472, 473, 503,
521, 548, 558, 629, 631, 654, 661, 685, 699, 743, 755]),
array([ 24, 34, 72, 97, 120, 140, 173, 181, 193, 199, 200, 225, 239,
251, 265, 296, 350, 386, 411, 422, 465, 476, 506, 533, 609, 628,
680, 694, 713, 759]),
....
通过这种结构,每个数组(
where
结果)的长度不同,上限来自 rm_number
:In [89]: [len(i) for i in new_indexes]-rm_number
Out[89]:
array([ 0, 0, 0, 0, 0, 0, 0, -2, -24, -40, 0, -3, -40,
0, -15, -5, 0, 0, 0, -96])
像这样的可变长度数组/列表很好地表明您无法进行超快速的“矢量化”(整个数组)操作,至少在没有显着的聪明的情况下并非如此。
我们可以获得您的代码生成的平面列表:
In [50]: np.concatenate(new_indexes).shape
Out[50]: (626,)
一些时间:
In [53]: %%timeit
...: new_indexes = []
...: for i, d in enumerate(rm_number):
...: new_indexes += list(np.where(ran_indexes == i + 1)[0][:d])
...:
320 µs ± 7.93 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [54]:
In [54]: %%timeit
...: new_indexes = []
...: for i, d in enumerate(rm_number):
...: new_indexes.append(np.where(ran_indexes == i + 1)[0][:d])
...:
184 µs ± 268 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [55]:
In [55]: %%timeit
...: new_indexes = []
...: for i, d in enumerate(rm_number):
...: new_indexes.append(np.where(ran_indexes == i + 1)[0][:d])
...: new_indexes=np.concatenate(new_indexes)
...:
...:
193 µs ± 622 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [79]: timeit f2() # Lukas
291 µs ± 1.43 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
===
temp = ran_indexes[:,None]==np.arange(1,21)
找到所有匹配项,
np.where(temp)[0]
是索引。但这不适用于您的 rm_number
界限。np.where(temp.T)[1] # without the `rm_number` truncation
np.where(temp[:,i])[0][:d]
关于python - 提高索引搜索和删除的性能,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/59176659/