我有一个这样的csv:
gene,stem1,stem2,stem3,b1,b2,b3,special_col
foo,20,10,11,23,22,79,3
bar,17,13,505,12,13,88,1
qui,17,13,5,12,13,88,3
作为数据框架,它看起来是这样的:
In [17]: import pandas as pd
In [20]: df = pd.read_table("http://dpaste.com/3PQV3FA.txt",sep=",")
In [21]: df
Out[21]:
gene stem1 stem2 stem3 b1 b2 b3 special_col
0 foo 20 10 11 23 22 79 3
1 bar 17 13 505 12 13 88 1
2 qui 17 13 5 12 13 88 3
我要做的是从最后一列(
special_col
)执行Pearson相关,在gene
列和special column
之间的每一列,即colnames[1:number_of_column-1]
在一天结束时,我们将有长度为6的数据帧。
Coln PearCorr
stem1 0.5
stem2 -0.5
stem3 -0.9999453506011533
b1 0.5
b2 0.5
b3 -0.5
上面的值是手动计算的:
In [27]: import scipy.stats
In [39]: scipy.stats.pearsonr([3, 1, 3], [11,505,5])
Out[39]: (-0.9999453506011533, 0.0066556395400007278)
我该怎么做?
最佳答案
注意,您的数据中有一个错误,特殊的列都是3,因此无法计算相关性。
如果在最后删除列选择,您将得到正在分析的所有其他列的相关矩阵。最后一个[:-1]是删除“特殊列”与自身的相关性。
In [15]: data[data.columns[1:]].corr()['special_col'][:-1]
Out[15]:
stem1 0.500000
stem2 -0.500000
stem3 -0.999945
b1 0.500000
b2 0.500000
b3 -0.500000
Name: special_col, dtype: float64
如果您对速度感兴趣,我的机器会稍微快一点:
In [33]: np.corrcoef(data[data.columns[1:]].T)[-1][:-1]
Out[33]:
array([ 0.5 , -0.5 , -0.99994535, 0.5 , 0.5 ,
-0.5 ])
In [34]: %timeit np.corrcoef(data[data.columns[1:]].T)[-1][:-1]
1000 loops, best of 3: 437 µs per loop
In [35]: %timeit data[data.columns[1:]].corr()['special_col']
1000 loops, best of 3: 526 µs per loop
但显然,它返回的是一个数组,而不是熊猫系列/df。