我正在尝试使高斯适合似乎遵循高斯分布的一组数据点。我已经检查了很多可行的方法,但是我不太了解其中的大多数。但是,我发现了一个似乎可行的解决方案,但是我得到的实际拟合看起来比数据点看起来更像是高斯。
这是我的代码:
import numpy as np
import matplotlib.pyplot as plt
from scipy import asarray as ar, exp, sqrt
from scipy.optimize import curve_fit
angles = [-8, -6, -4, -2, 0, 2, 4, 6, 8]
data = [99, 610, 1271, 1804, 1823, 1346, 635, 125, 24]
angles = ar(angles)
data = ar(data)
n = len(x)
mean = sum(data*angles)/n
sigma = sqrt(sum(data*(angles-mean)**2)/n)
def gaus(x,a,mu,sigma):
return a*exp(-(x-mu)**2/(2*sigma**2))
popt,pcov = curve_fit(gaus,angles,data,p0=[0.18,mean,sigma])
fig = plt.figure()
plt.plot(angles, data, "ob", label = "Measured")
plt.plot(angles,gaus(angles,*popt),'r',label='Fit')
plt.xlim(-10, 10)
plt.ylim(0, 2000)
plt.xticks(angles)
plt.title("$^{137}$Cs Zero Point")
plt.xlabel("Angle [$^\circ$]")
plt.ylabel("662 keV-Photon Count")
plt.grid()
plt.legend()
plt.show()
这是它生成的输出:
如您所见,该拟合并不能描述一个良好且对称的“真实”高斯。
有什么方法可以使我获得“更好的”高斯,还是达到它的效果呢?
非常感谢!
最佳答案
我认为这里有两件事:
似乎遵循高斯分布
→如果您认为数据是正态分布的,那么您就处于统计和概率分布的领域,并且可能希望使用test来查看它们是否与特定的分布(正态分布或其他分布)一致。
并与您的情节一起工作:
得到一个“更好的”高斯图
在您的代码中,您可以省略curve_fit
中的第一个估计值,并针对连续的独立变量绘制拟合曲线:
import numpy as np
import matplotlib.pyplot as plt
from scipy import asarray as ar, exp, sqrt
from scipy.optimize import curve_fit
angles = [-8, -6, -4, -2, 0, 2, 4, 6, 8]
data = [99, 610, 1271, 1804, 1823, 1346, 635, 125, 24]
angles = ar(angles)
data = ar(data)
n = len(data) ## <---
mean = sum(data*angles)/n
sigma = sqrt(sum(data*(angles-mean)**2)/n)
def gaus(x,a,mu,sigma):
return a*exp(-(x-mu)**2/(2*sigma**2))
popt,pcov = curve_fit(gaus,angles,data)#,p0=[0.18,mean,sigma]) ## <--- leave out the first estimation of the parameters
xx = np.linspace( -10, 10, 100 ) ## <--- calculate against a continuous variable
fig = plt.figure()
plt.plot(angles, data, "ob", label = "Measured")
plt.plot(xx,gaus(xx,*popt),'r',label='Fit') ## <--- plot against the contious variable
plt.xlim(-10, 10)
plt.ylim(0, 2000)
plt.xticks(angles)
plt.title("$^{137}$Cs Zero Point")
plt.xlabel("Angle [$^\circ$]")
plt.ylabel("662 keV-Photon Count")
plt.grid()
plt.legend()
plt.savefig('normal.png')
plt.show()
在此示例中:
print( popt )
[ 1.93154077e+03 -9.21486804e-01 3.26251063e+00]
请注意,参数的第一个估算值与结果相差几个数量级:0.18对1931.15。
关于python - 使更好的高斯拟合数据点?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/42026554/