我必须计算以下内容:
float2 y = CONSTANT;
for (int i = 0; i < totalN; i++)
h[i] = cos(y*i);
totalN很大,所以我想以一种更有效的方式做到这一点。有什么办法可以改善这一点?我怀疑这是因为,毕竟,对于n = 1..N,我们知道cos(n)的结果是什么,所以也许有一些定理可以让我更快地计算出该定理。我真的很感谢任何提示。
提前致谢,
费德里科
最佳答案
使用最美丽的数学公式之一Euler's formulaexp(i*x) = cos(x) + i*sin(x)
,
替换x := n * phi
:cos(n*phi) = Re( exp(i*n*phi) )
sin(n*phi) = Im( exp(i*n*phi) )
exp(i*n*phi) = exp(i*phi) ^ n
幂^n
是n
重复乘法。
因此,您可以通过以cos(n*phi)
开头的sin(n*phi)
进行重复的复数乘法来计算exp(i*phi)
并同时计算(1+i*0)
。
代码示例:
Python:
from math import *
DEG2RAD = pi/180.0 # conversion factor degrees --> radians
phi = 10*DEG2RAD # constant e.g. 10 degrees
c = cos(phi)+1j*sin(phi) # = exp(1j*phi)
h=1+0j
for i in range(1,10):
h = h*c
print "%d %8.3f"%(i,h.real)
或C:
#include <stdio.h>
#include <math.h>
// numer of values to calculate:
#define N 10
// conversion factor degrees --> radians:
#define DEG2RAD (3.14159265/180.0)
// e.g. constant is 10 degrees:
#define PHI (10*DEG2RAD)
typedef struct
{
double re,im;
} complex_t;
int main(int argc, char **argv)
{
complex_t c;
complex_t h[N];
int index;
c.re=cos(PHI);
c.im=sin(PHI);
h[0].re=1.0;
h[0].im=0.0;
for(index=1; index<N; index++)
{
// complex multiplication h[index] = h[index-1] * c;
h[index].re=h[index-1].re*c.re - h[index-1].im*c.im;
h[index].im=h[index-1].re*c.im + h[index-1].im*c.re;
printf("%d: %8.3f\n",index,h[index].re);
}
}
关于algorithm - 计算序列的余弦,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/2357955/