我有一个 Pandas 数据框。我需要将某些列转换为行。对于每3行,该数据帧在前两列中具有相同的数据。因此,正如您在预期数据框中看到的那样,我还需要6列。
我有以下数据框:
shopCode Product Code Score
111 Apple 123 0.70
111 Apple 456 0.75
111 Apple 789 0.80
222 Orange 142 0.66
222 Orange 136 0.83
222 Orange 623 0.76
我期望的数据帧是:
shopCode Product Code1 Code2 Code3 Score1 Score2 Score3
111 Apple 123 456 789 0.70 0.75 0.80
222 Orange 142 136 623 0.66 0.83 0.76
我尝试使用
df.pivot(index=['shopCode', 'Product'], columns=['Code1', 'Code2', 'Code3', 'Score1', 'Score2', 'Score3'], values=['Code', 'Score'])
但这是行不通的。 最佳答案
我们使用pivot_table
df=pd.pivot_table(df,index=['shopCode','Product'],columns=df.groupby(['shopCode','Product']).cumcount().add(1),values=['Code','Score'],aggfunc='sum')
df.columns=df.columns.map('{0[0]}{0[1]}'.format)
df
Out[112]:
Code1 Code2 Code3 Score1 Score2 Score3
shopCode Product
111 Apple 123 456 789 0.70 0.75 0.80
222 Orange 142 136 623 0.66 0.83 0.76
reset_index
之后df.reset_index()
Out[113]:
shopCode Product Code1 Code2 Code3 Score1 Score2 Score3
0 111 Apple 123 456 789 0.70 0.75 0.80
1 222 Orange 142 136 623 0.66 0.83 0.76