我有两个numpy数组:
aa = np.random.rand(5,5)
bb = np.random.rand(5,5)
?
最佳答案
。。。。。-
out1 = ((aa>0.5) & (bb>0.5)).astype(int)
out2 = np.logical_and(aa>0.5, bb>0.5).astype(int)
out3 = np.where((aa>0.5) & (bb>0.5),1,0)
out4 = np.where(np.logical_and(aa>0.5, bb>0.5), 1, 0)
。。。-
out5 = ((aa>0.5) & (bb>0.5)).astype('int8')
out6 = np.logical_and(aa>0.5, bb>0.5).astype('int8')
out7 = ((aa>0.5) & (bb>0.5)).astype('uint8')
out8 = np.logical_and(aa>0.5, bb>0.5).astype('uint8')
out9 = ((aa>0.5) & (bb>0.5)).astype(np.int8)
out10 = np.logical_and(aa>0.5, bb>0.5).astype(np.int8)
out11 = ((aa>0.5) & (bb>0.5)).astype(np.uint8)
out12 = np.logical_and(aa>0.5, bb>0.5).astype(np.uint8)
运行时测试(在本文中,我们将重点放在性能上)-
In [17]: # Input arrays
...: aa = np.random.rand(1000,1000)
...: bb = np.random.rand(1000,1000)
...:
In [18]: %timeit ((aa>0.5) & (bb>0.5)).astype(int)
...: %timeit np.logical_and(aa>0.5, bb>0.5).astype(int)
...: %timeit np.where((aa>0.5) & (bb>0.5),1,0)
...: %timeit np.where(np.logical_and(aa>0.5, bb>0.5), 1, 0)
...:
100 loops, best of 3: 9.13 ms per loop
100 loops, best of 3: 9.16 ms per loop
100 loops, best of 3: 10.4 ms per loop
100 loops, best of 3: 10.4 ms per loop
In [19]: %timeit ((aa>0.5) & (bb>0.5)).astype('int8')
...: %timeit np.logical_and(aa>0.5, bb>0.5).astype('int8')
...: %timeit ((aa>0.5) & (bb>0.5)).astype('uint8')
...: %timeit np.logical_and(aa>0.5, bb>0.5).astype('uint8')
...:
...: %timeit ((aa>0.5) & (bb>0.5)).astype(np.int8)
...: %timeit np.logical_and(aa>0.5, bb>0.5).astype(np.int8)
...: %timeit ((aa>0.5) & (bb>0.5)).astype(np.uint8)
...: %timeit np.logical_and(aa>0.5, bb>0.5).astype(np.uint8)
...:
100 loops, best of 3: 5.6 ms per loop
100 loops, best of 3: 5.61 ms per loop
100 loops, best of 3: 5.63 ms per loop
100 loops, best of 3: 5.63 ms per loop
100 loops, best of 3: 5.62 ms per loop
100 loops, best of 3: 5.62 ms per loop
100 loops, best of 3: 5.62 ms per loop
100 loops, best of 3: 5.61 ms per loop
In [20]: %timeit 1 * ((aa > 0.5) & (bb > 0.5)) #@BPL's vectorized soln
100 loops, best of 3: 10.2 ms per loop