出于可重复性原因,数据集和可重复性原因,我在[此处] [1]共享它。
这就是我正在做的-从第2列开始,我正在读取当前行并将其与上一行的值进行比较。如果更大,我会继续比较。如果当前值小于上一行的值,我想将当前值(较小)除以上一个值(较大)。因此,以下代码:
这给出了以下图表。
sns.distplot(quotient, hist=False, label=protname)
正如我们从情节中看到的那样
quotient_times
小于3,则数据-V 的商为0.8;如果quotient_times
为商,则商保持0.5。大于3。
我想对这些值进行归一化,以使第二个绘图值的
y-axis
在0和1之间。我们如何在Python中做到这一点? 最佳答案
前言
据我了解,默认情况下,seaborn distplot会进行kde估计。
如果您想要归一化的distplot图,则可能是因为您假设该图的Ys应该限制在[0; 1]之间。如果是这样,则堆栈溢出问题引发了kde estimators showing values above 1问题。
引用one answer:
引用importanceofbeingernest的第一条评论:
据我所知,CDF (Cumulative Density Function)的值应该在[0; 1]。
注意:所有可能的连续可拟合函数均为on SciPy site and available in the package scipy.stats
也许还看看probability mass functions?
如果您确实希望对同一图进行标准化,则应收集绘制函数(选项1)或函数定义(选项2)的实际数据点,并对其进行归一化并重新绘制。
选项1
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import sys
print('System versions : {}'.format(sys.version))
print('System versions : {}'.format(sys.version_info))
print('Numpy versqion : {}'.format(np.__version__))
print('matplotlib.pyplot version: {}'.format(matplotlib.__version__))
print('seaborn version : {}'.format(sns.__version__))
protocols = {}
types = {"data_v": "data_v.csv"}
for protname, fname in types.items():
col_time,col_window = np.loadtxt(fname,delimiter=',').T
trailing_window = col_window[:-1] # "past" values at a given index
leading_window = col_window[1:] # "current values at a given index
decreasing_inds = np.where(leading_window < trailing_window)[0]
quotient = leading_window[decreasing_inds]/trailing_window[decreasing_inds]
quotient_times = col_time[decreasing_inds]
protocols[protname] = {
"col_time": col_time,
"col_window": col_window,
"quotient_times": quotient_times,
"quotient": quotient,
}
fig, (ax1, ax2) = plt.subplots(1,2, sharey=False, sharex=False)
g = sns.distplot(quotient, hist=True, label=protname, ax=ax1, rug=True)
ax1.set_title('basic distplot (kde=True)')
# get distplot line points
line = g.get_lines()[0]
xd = line.get_xdata()
yd = line.get_ydata()
# https://stackoverflow.com/questions/29661574/normalize-numpy-array-columns-in-python
def normalize(x):
return (x - x.min(0)) / x.ptp(0)
#normalize points
yd2 = normalize(yd)
# plot them in another graph
ax2.plot(xd, yd2)
ax2.set_title('basic distplot (kde=True)\nwith normalized y plot values')
plt.show()
选项2
下面,我尝试执行kde并将获得的估计值归一化。我不是统计专家,所以kde用法可能在某些方面是错误的(正如截图中所见,它与seaborn的用法不同,这是因为seaborn的工作方式比我好得多。它只是试图模仿与Scipy拟合的KDE。结果还不错(我猜)
截屏:
代码:
import numpy as np
from scipy import stats
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import sys
print('System versions : {}'.format(sys.version))
print('System versions : {}'.format(sys.version_info))
print('Numpy versqion : {}'.format(np.__version__))
print('matplotlib.pyplot version: {}'.format(matplotlib.__version__))
print('seaborn version : {}'.format(sns.__version__))
protocols = {}
types = {"data_v": "data_v.csv"}
for protname, fname in types.items():
col_time,col_window = np.loadtxt(fname,delimiter=',').T
trailing_window = col_window[:-1] # "past" values at a given index
leading_window = col_window[1:] # "current values at a given index
decreasing_inds = np.where(leading_window < trailing_window)[0]
quotient = leading_window[decreasing_inds]/trailing_window[decreasing_inds]
quotient_times = col_time[decreasing_inds]
protocols[protname] = {
"col_time": col_time,
"col_window": col_window,
"quotient_times": quotient_times,
"quotient": quotient,
}
fig, (ax1, ax2, ax3, ax4) = plt.subplots(1,4, sharey=False, sharex=False)
diff=quotient_times
ax1.plot(diff, quotient, ".", label=protname, color="blue")
ax1.set_ylim(0, 1.0001)
ax1.set_title(protname)
ax1.set_xlabel("quotient_times")
ax1.set_ylabel("quotient")
ax1.legend()
sns.distplot(quotient, hist=True, label=protname, ax=ax2, rug=True)
ax2.set_title('basic distplot (kde=True)')
# taken from seaborn's source code (utils.py and distributions.py)
def seaborn_kde_support(data, bw, gridsize, cut, clip):
if clip is None:
clip = (-np.inf, np.inf)
support_min = max(data.min() - bw * cut, clip[0])
support_max = min(data.max() + bw * cut, clip[1])
return np.linspace(support_min, support_max, gridsize)
kde_estim = stats.gaussian_kde(quotient, bw_method='scott')
# manual linearization of data
#linearized = np.linspace(quotient.min(), quotient.max(), num=500)
# or better: mimic seaborn's internal stuff
bw = kde_estim.scotts_factor() * np.std(quotient)
linearized = seaborn_kde_support(quotient, bw, 100, 3, None)
# computes values of the estimated function on the estimated linearized inputs
Z = kde_estim.evaluate(linearized)
# https://stackoverflow.com/questions/29661574/normalize-numpy-array-columns-in-python
def normalize(x):
return (x - x.min(0)) / x.ptp(0)
# normalize so it is between 0;1
Z2 = normalize(Z)
for name, func in {'min': np.min, 'max': np.max}.items():
print('{}: source={}, normalized={}'.format(name, func(Z), func(Z2)))
# plot is different from seaborns because not exact same method applied
ax3.plot(linearized, Z, ".", label=protname, color="orange")
ax3.set_title('Non linearized gaussian kde values')
# manual kde result with Y axis avalues normalized (between 0;1)
ax4.plot(linearized, Z2, ".", label=protname, color="green")
ax4.set_title('Normalized gaussian kde values')
plt.show()
输出:
System versions : 3.7.2 (default, Feb 21 2019, 17:35:59) [MSC v.1915 64 bit (AMD64)]
System versions : sys.version_info(major=3, minor=7, micro=2, releaselevel='final', serial=0)
Numpy versqion : 1.16.2
matplotlib.pyplot version: 3.0.2
seaborn version : 0.9.0
min: source=0.0021601491646143518, normalized=0.0
max: source=9.67319154426489, normalized=1.0
与评论相反,标出:
[(x-min(quotient))/(max(quotient)-min(quotient)) for x in quotient]
不会改变行为!它仅更改用于内核密度估计的源数据。曲线形状将保持不变。
Quoting seaborn's distplot doc:
默认:
默认情况下使用kde。引用seaborn的kde文档:
引用SCiPy gaussian kde method doc:
请注意,我确实相信您的数据是双峰的,就像您自己提到的那样。它们看起来也很离散。据我所知,离散分布函数可能无法以连续的方式进行分析,因此拟合可能会很棘手。
这是各种法律的示例:
import numpy as np
from scipy.stats import uniform, powerlaw, logistic
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import sys
print('System versions : {}'.format(sys.version))
print('System versions : {}'.format(sys.version_info))
print('Numpy versqion : {}'.format(np.__version__))
print('matplotlib.pyplot version: {}'.format(matplotlib.__version__))
print('seaborn version : {}'.format(sns.__version__))
protocols = {}
types = {"data_v": "data_v.csv"}
for protname, fname in types.items():
col_time,col_window = np.loadtxt(fname,delimiter=',').T
trailing_window = col_window[:-1] # "past" values at a given index
leading_window = col_window[1:] # "current values at a given index
decreasing_inds = np.where(leading_window < trailing_window)[0]
quotient = leading_window[decreasing_inds]/trailing_window[decreasing_inds]
quotient_times = col_time[decreasing_inds]
protocols[protname] = {
"col_time": col_time,
"col_window": col_window,
"quotient_times": quotient_times,
"quotient": quotient,
}
fig, [(ax1, ax2, ax3), (ax4, ax5, ax6)] = plt.subplots(2,3, sharey=False, sharex=False)
diff=quotient_times
ax1.plot(diff, quotient, ".", label=protname, color="blue")
ax1.set_ylim(0, 1.0001)
ax1.set_title(protname)
ax1.set_xlabel("quotient_times")
ax1.set_ylabel("quotient")
ax1.legend()
quotient2 = [(x-min(quotient))/(max(quotient)-min(quotient)) for x in quotient]
print(quotient2)
sns.distplot(quotient, hist=True, label=protname, ax=ax2, rug=True)
ax2.set_title('basic distplot (kde=True)')
sns.distplot(quotient2, hist=True, label=protname, ax=ax3, rug=True)
ax3.set_title('logistic distplot')
sns.distplot(quotient, hist=True, label=protname, ax=ax4, rug=True, kde=False, fit=uniform)
ax4.set_title('uniform distplot')
sns.distplot(quotient, hist=True, label=protname, ax=ax5, rug=True, kde=False, fit=powerlaw)
ax5.set_title('powerlaw distplot')
sns.distplot(quotient, hist=True, label=protname, ax=ax6, rug=True, kde=False, fit=logistic)
ax6.set_title('logistic distplot')
plt.show()
输出:
System versions : 3.7.2 (default, Feb 21 2019, 17:35:59) [MSC v.1915 64 bit (AMD64)]
System versions : sys.version_info(major=3, minor=7, micro=2, releaselevel='final', serial=0)
Numpy versqion : 1.16.2
matplotlib.pyplot version: 3.0.2
seaborn version : 0.9.0
[1.0, 0.05230125523012544, 0.0433775382360589, 0.024590765616971128, 0.05230125523012544, 0.05230125523012544, 0.05230125523012544, 0.02836946874603772, 0.05230125523012544, 0.05230125523012544, 0.05230125523012544, 0.05230125523012544, 0.03393500048652319, 0.05230125523012544, 0.05230125523012544, 0.05230125523012544, 0.0037013196009011043, 0.0, 0.05230125523012544]
截屏: