使用 dplyr
我正在为两个类别生成一个简单的汇总表:
# Data
data("mtcars")
# Lib
require(dplyr)
# Summary
mt_sum <- mtcars %>%
group_by(am, gear) %>%
summarise(n = n()) %>%
spread(key = am, value = n)
这产生了预期的结果:
Source: local data frame [3 x 3]
gear 0 1
(dbl) (int) (int)
1 3 15 NA
2 4 4 8
3 5 NA 5
在生成的表中,我想添加一组包含行百分比而不是当前可用总数的列。
预期结果
我希望我的 table 看起来像这样:
gear 0 1 0per 1per
1 3 15 NA 100%
2 4 4 8 33% 67%
3 5 NA 5 100%
尝试
我试图通过添加代码来实现以下目标:
mt_sum <- mtcars %>%
group_by(am, gear) %>%
summarise(n = n()) %>%
spread(key = am, value = n) %>%
mutate_each(funs(./rowSums(.)))
但它返回以下错误:
因此我的问题是: 如何在
dplyr
中添加带有行百分比值的额外列? 侧分
NAs
CrossTable
中的 gmodels
轻松构建该表,但我想留在 dplyr
中,因为我想在一个地方保留尽可能多的转换 最佳答案
我认为这就是你需要的:
# Data
data("mtcars")
# Lib
require(dplyr)
require(tidyr)
require(scales) #for percent
# Summary
mtcars %>%
group_by(am, gear) %>%
summarise(n = n()) %>%
spread(key = am, value = n) %>%
#you need rowwise because this is a rowwise operation
rowwise %>%
#I find do to be the best function for ad-hoc things that
#have no specific dplyr function
#I use do below to calculate the numeric percentages
do(data.frame(.,
per0 = .$`0` / sum(.$`0`, .$`1`, na.rm=TRUE),
per1 = .$`1` / sum(.$`0`, .$`1`, na.rm=TRUE))) %>%
#mutate here is used to convert NAs to blank and numbers to percentages
mutate(per0 = ifelse(is.na(per0), '', percent(per0)),
per1 = ifelse(is.na(per1), '', percent(per1)))
输出:
Source: local data frame [3 x 5]
Groups: <by row>
gear X0 X1 per0 per1
(dbl) (int) (int) (chr) (chr)
1 3 15 NA 100%
2 4 4 8 33.3% 66.7%
3 5 NA 5 100%
关于r - 在dplyr中按组获得总和后计算具有行百分比的列,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/34069576/