假设给定一组N个区间(表示为左坐标和右坐标)和M个点对于每个点,p算法应该找到p所属的区间数。
我的算法是:
1)将区间的左坐标和右坐标分别放在“左”和“右”数组中
2)排序“左”,同时与“右”交换条目
3)给定一个点p,求最大i,使左[i] 4)对于每个j=p,则结果加1
5)返回结果
Java实现:

import java.util.*;

class Intervals {

    public  static int count(int[] left, int[] right, int point) {
        int k = find(left, point), result = 0;
        for (int i=0; i < k; i++)
            if (point <= right[i]) result++;
        return result;
    }


    private static int find(int[] a, int point) {
        if (point < a[0]) return -1;
        int i = 0;
        while (i < a.length && a[i] <= point) i++;
        return i;
    }

    private static void sort(int[] a, int[] b) {
        sort(a, b, 0, a.length-1);
    }

    private static void sort(int[] left, int[] right, int lo, int hi) {
        if (hi <= lo) return;
        int lt = lo, gt = hi;
        exchange(left, right, lo, lo + (int) (Math.random() * (hi-lo+1)));
        int v = left[lo];
        int i = lo;
        while (i <= gt) {
            if      (left[i] < v) exchange(left, right, lt++, i++);
            else if (left[i] > v) exchange(left, right, i, gt--);
            else                  i++;
        }
        sort(left, right, lo, lt-1);
        sort(left, right, gt+1, hi);
    }

    private static void exchange(int[] left, int[] right, int i, int j) {
        int temp  = left[i];
        left[i]   = left[j];
        left[j]   = temp;
        temp      = right[i];
        right[i]  = right[j];
        right[j]  = temp;
    }

    private static boolean less(int[] a, int i, int j) {
        return a[i] < a[j];
    }


    public static void main(String[] args) {
        int n       = Integer.parseInt(args[0]);
        int m       = Integer.parseInt(args[1]);
        int[] left  = new int[n];
        int[] right = new int[n];
        Random r    = new Random();
        int MAX     = 100000;
        for (int i = 0; i < n; i++) {
            left[i] = r.nextInt(MAX);
            right[i] = left[i] + r.nextInt(MAX/4);
        }
        sort(left, right);
        for (int i=0; i < m; i++)
            System.out.println(count(left, right, r.nextInt(MAX)));
    }
}

这段代码还没有通过测试,我正试图找到一个bug。关键是我实际上不知道这些测试中使用了什么输入数据。
谢谢。

最佳答案

可能不是你想要的答案,但可能是某一天有人遇到这个问题的答案。
如果您计划经常查询一组相当静态的范围,那么您可能希望考虑使用Interval Tree

public class IntervalTree<T extends IntervalTree.Interval> {
  // My intervals.

  private final List<T> intervals;
  // My center value. All my intervals contain this center.
  private final long center;
  // My interval range.
  private final long lBound;
  private final long uBound;
  // My left tree. All intervals that end below my center.
  private final IntervalTree<T> left;
  // My right tree. All intervals that start above my center.
  private final IntervalTree<T> right;

  public IntervalTree(List<T> intervals) {
    if (intervals == null) {
      throw new NullPointerException();
    }

    // Initially, my root contains all intervals.
    this.intervals = intervals;

    // Find my center.
    center = findCenter();

    /*
     * Builds lefts out of all intervals that end below my center.
     * Builds rights out of all intervals that start above my center.
     * What remains contains all the intervals that contain my center.
     */

    // Lefts contains all intervals that end below my center point.
    final List<T> lefts = new ArrayList<T>();
    // Rights contains all intervals that start above my center point.
    final List<T> rights = new ArrayList<T>();

    long uB = Long.MIN_VALUE;
    long lB = Long.MAX_VALUE;
    for (T i : intervals) {
      long start = i.getStart();
      long end = i.getEnd();
      if (end < center) {
        lefts.add(i);
      } else if (start > center) {
        rights.add(i);
      } else {
        // One of mine.
        lB = Math.min(lB, start);
        uB = Math.max(uB, end);
      }
    }

    // Remove all those not mine.
    intervals.removeAll(lefts);
    intervals.removeAll(rights);
    uBound = uB;
    lBound = lB;

    // Build the subtrees.
    left = lefts.size() > 0 ? new IntervalTree<T>(lefts) : null;
    right = rights.size() > 0 ? new IntervalTree<T>(rights) : null;

    // Build my ascending and descending arrays.
    /**
     * @todo Build my ascending and descending arrays.
     */
  }

  /*
   * Returns a list of all intervals containing the point.
   */
  List<T> query(long point) {
    // Check my range.
    if (point >= lBound) {
      if (point <= uBound) {
        // In my range but remember, there may also be contributors from left or right.
        List<T> found = new ArrayList<T>();
        // Gather all intersecting ones.
        // Could be made faster (perhaps) by holding two sorted lists by start and end.
        for (T i : intervals) {
          if (i.getStart() <= point && point <= i.getEnd()) {
            found.add(i);
          }
        }

        // Gather others.
        if (point < center && left != null) {
          found.addAll(left.query(point));
        }
        if (point > center && right != null) {
          found.addAll(right.query(point));
        }

        return found;
      } else {
        // To right.
        return right != null ? right.query(point) : Collections.<T>emptyList();
      }
    } else {
      // To left.
      return left != null ? left.query(point) : Collections.<T>emptyList();
    }

  }

  private long findCenter() {
    //return average();
    return median();
  }

  /**
   * @deprecated Causes obscure issues.
   * @return long
   */
  @Deprecated
  protected long average() {
    // Can leave strange (empty) nodes because the average could be in a gap but much quicker.
    // Don't use.
    long value = 0;
    for (T i : intervals) {
      value += i.getStart();
      value += i.getEnd();
    }
    return intervals.size() > 0 ? value / (intervals.size() * 2) : 0;
  }

  protected long median() {
    // Choose the median of all centers. Could choose just ends etc or anything.
    long[] points = new long[intervals.size()];
    int x = 0;
    for (T i : intervals) {
      // Take the mid point.
      points[x++] = (i.getStart() + i.getEnd()) / 2;
    }
    Arrays.sort(points);
    return points[points.length / 2];
  }

  void dump() {
    dump(0);
  }

  private void dump(int level) {
    LogFile log = LogFile.getLog();
    if (left != null) {
      left.dump(level + 1);
    }
    String indent = "|" + StringUtils.spaces(level);
    log.finer(indent + "Bounds:- {" + lBound + "," + uBound + "}");
    for (int i = 0; i < intervals.size(); i++) {
      log.finer(indent + "- " + intervals.get(i));
    }
    if (right != null) {
      right.dump(level + 1);
    }

  }

  /*
   * What an interval looks like.
   */
  public interface Interval {

    public long getStart();

    public long getEnd();
  }

  /*
   * A simple implemementation of an interval.
   */
  public static class SimpleInterval implements Interval {

    private final long start;
    private final long end;

    public SimpleInterval(long start, long end) {
      this.start = start;
      this.end = end;
    }

    public long getStart() {
      return start;
    }

    public long getEnd() {
      return end;
    }

    @Override
    public String toString() {
      return "{" + start + "," + end + "}";
    }
  }

  /**
   * Not called by App, so you will have to call this directly.
   *
   * @param args
   */
  public static void main(String[] args) {
    /**
     * @todo Needs MUCH more rigorous testing.
     */
    // Test data.
    long[][] data = {
      {1, 2},
      {2, 9},
      {4, 8},
      {3, 5},
      {7, 9},};
    List<Interval> intervals = new ArrayList<Interval>();
    for (long[] pair : data) {
      intervals.add(new SimpleInterval(pair[0], pair[1]));
    }
    // Build it.
    IntervalTree<Interval> test = new IntervalTree<Interval>(intervals);

    // Test it.
    System.out.println("Normal test: ---");
    for (long i = 0; i < 10; i++) {
      List<Interval> intersects = test.query(i);
      System.out.println("Point " + i + " intersects:");
      for (Interval t : intersects) {
        System.out.println(t.toString());
      }
    }

    // Check for empty list.
    intervals.clear();
    test = new IntervalTree<Interval>(intervals);
    // Test it.
    System.out.println("Empty test: ---");
    for (long i = 0; i < 10; i++) {
      List<Interval> intersects = test.query(i);
      System.out.println("Point " + i + " intersects:");
      for (Interval t : intersects) {
        System.out.println(t.toString());
      }
    }

  }
}

关于java - 给定一组间隔,找出包含一个点的间隔,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/23062568/

10-11 03:42
查看更多