给定一些f和微分方程x'(t)= f(x(t)),我如何根据x(t)计算x(n)(t)?
例如,假设f(x(t))= sin(x(t)),
我想获得x(3)(t)=(cos(x(t))2-sin(x(t))2)sin(x(t))。
到目前为止,我已经尝试过

>>> from sympy import diff, sin
>>> from sympy.abc import x, t
>>> diff(sin(x(t)), t, 2)
这给了我
-sin(x(t))*Derivative(x(t), t)**2 + cos(x(t))*Derivative(x(t), t, t)
但是我不确定如何告诉SymPy什么是Derivative(x(t), t)并自动找出Derivative(x(t), t, t)等。

回答:
这是根据下面收到的答案得出的最终解决方案:
def diff(x_derivs_known, t, k, simplify=False):
    try: n = len(x_derivs_known)
    except TypeError: n = None
    if n is None:
        result = sympy.diff(x_derivs_known, t, k)
        if simplify: result = result.simplify()
    elif k < n:
        result = x_derivs_known[k]
    else:
        i = n - 1
        result = x_derivs_known[i]
        while i < k:
            result = result.diff(t)
            j = len(x_derivs_known)
            x0 = None
            while j > 1:
                j -= 1
                result = result.subs(sympy.Derivative(x_derivs_known[0], t, j), x_derivs_known[j])
            i += 1
            if simplify: result = result.simplify()
    return result
例子:
>>> diff((x(t), sympy.sin(x(t))), t, 3, True)
sin(x(t))*cos(2*x(t))

最佳答案

这是一种返回直到n -th阶的所有导数的列表的方法

import sympy as sp

x = sp.Function('x')
t = sp.symbols('t')

f = lambda x: x**2 #sp.exp, sp.sin
n = 4 #3, 4, 5

deriv_list = [x(t), f(x(t))]  # list of derivatives [x(t), x'(t), x''(t),...]
for i in range(1,n):
    df_i = deriv_list[-1].diff(t).replace(sp.Derivative,lambda *args: f(x(t)))
    deriv_list.append(df_i)

print(deriv_list)



随着f=sp.sin它返回



编辑:用于计算n -th导数的递归函数:
def der_xt(f, n):
    if n==1:
        return f(x(t))
    else:
        return der_xt(f,n-1).diff(t).replace(sp.Derivative,lambda *args: f(x(t)))

print(der_xt(sp.sin,3))

关于python - 如何使用SymPy查找给定一阶导数的n阶导数?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/40324336/

10-12 19:33