如何以高性能方式将十六进制数0x1234扩展为0x11223344?

unsigned int c = 0x1234, b;
b = (c & 0xff) << 4 | c & 0xf | (c & 0xff0) << 8
        | (c & 0xff00) << 12 | (c & 0xf000) << 16;
printf("%p -> %p\n", c, b);

输出:
0x1234 -> 0x11223344

我需要此颜色转换。用户以0xARGB的形式提供数据,我需要将其转换为0xAARRGGBB。是的,可能有数百万个,因为每个都可能是一个像素。 1000x1000像素等于一百万。

实际情况更加复杂,因为单个32位值同时包含前景色和背景色。因此0xARGBargb变为:[ 0xAARRGGBB, 0xaarrggbb ]
哦,是的,还有一件事,在真实的应用程序中,我也取反了alpha,因为在OpenGL中0xFF是不透明的,而0x00是最透明的,这在大多数情况下不方便,因为通常您只需要RGB部分,并且假定透明度不存在。

最佳答案

可以使用SSE2完成此操作,如下所示:

void ExpandSSE2(unsigned __int64 in, unsigned __int64 &outLo, unsigned __int64 &outHi) {
  __m128i const mask = _mm_set1_epi16((short)0xF00F);
  __m128i const mul0 = _mm_set1_epi16(0x0011);
  __m128i const mul1 = _mm_set1_epi16(0x1000);
  __m128i       v;

  v = _mm_cvtsi64_si128(in); // Move the 64-bit value to a 128-bit register
  v = _mm_unpacklo_epi8(v, v);  // 0x12   -> 0x1212
  v = _mm_and_si128(v, mask);   // 0x1212 -> 0x1002
  v = _mm_mullo_epi16(v, mul0); // 0x1002 -> 0x1022
  v = _mm_mulhi_epu16(v, mul1); // 0x1022 -> 0x0102
  v = _mm_mullo_epi16(v, mul0); // 0x0102 -> 0x1122

  outLo = _mm_extract_epi64(v, 0);
  outHi = _mm_extract_epi64(v, 1);
}

当然,您希望将函数的内容放入内部循环并提取常量。您还需要跳过x64寄存器,并将值直接加载到128位SSE寄存器中。有关如何执行此操作的示例,请引用下面的性能测试中的SSE2实现。

它的核心是五个指令,它们一次对四个颜色值执行运算。因此,每个颜色值大约只有1.25条指令。还应注意,x64可用的任何地方都可以使用SSE2。

在这里进行各种解决方案的性能测试
少数人提到,知道更快的唯一方法是运行代码,这无疑是正确的。因此,我将一些解决方案编入了性能测试,以便我们可以将苹果与苹果进行比较。我选择的解决方案与我认为与其他解决方案有显着差异,需要进行测试。所有解决方案均从内存读取,对数据进行操作并写回内存。实际上,当没有其他完整的16个字节要处理的输入数据时,某些SSE解决方案将需要在对齐和处理情况下格外小心。我测试的代码是在运行于4 GHz以上的Visual Studio 2013上的Core i7发行时通过x64编译的。

这是我的结果:
ExpandOrig:               56.234 seconds  // From asker's original question
ExpandSmallLUT:           30.209 seconds  // From Dmitry's answer
ExpandLookupSmallOneLUT:  33.689 seconds  // from Dmitry's answer
ExpandLookupLarge:        51.312 seconds  // A straightforward lookup table
ExpandAShelly:            43.829 seconds  // From AShelly's answer
ExpandAShellyMulOp:       43.580 seconds  // AShelly's answer with an optimization
ExpandSSE4:               17.854 seconds  // My original SSE4 answer
ExpandSSE4Unroll:         17.405 seconds  // My original SSE4 answer with loop unrolling
ExpandSSE2:               17.281 seconds  // My current SSE2 answer
ExpandSSE2Unroll:         17.152 seconds  // My current SSE2 answer with loop unrolling

在上面的测试结果中,您将看到我包括了问询者的代码,三个查找表的实现,包括Dmitry的答案中提出的小型查找表的实现。 AShelly的解决方案也包括在内,还包括我进行了优化的版本(可以取消操作)。我包括了我最初的SSE4实现,以及后来制作的高级SSE2版本(现已反射(reflect)为答案),以及这两个版本的展开版本,因为它们是这里最快的,我想看看有多少展开了它们。我还包括了AShelly答案的SSE4实现。

到目前为止,我必须宣布自己是赢家。但是源代码在下面,因此任何人都可以在自己的平台上对其进行测试,并将自己的解决方案包括在测试中,以查看他们是否制定了更快的解决方案。
#define DATA_SIZE_IN  ((unsigned)(1024 * 1024 * 128))
#define DATA_SIZE_OUT ((unsigned)(2 * DATA_SIZE_IN))
#define RERUN_COUNT   500

#include <cstdlib>
#include <ctime>
#include <iostream>
#include <utility>
#include <emmintrin.h> // SSE2
#include <tmmintrin.h> // SSSE3
#include <smmintrin.h> // SSE4

void ExpandOrig(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  unsigned u, v;
  do {
    // Read in data
    u  = *(unsigned const*)in;
    v  = u >> 16;
    u &= 0x0000FFFF;

    // Do computation
    u  =   (u & 0x00FF) << 4
         | (u & 0x000F)
         | (u & 0x0FF0) << 8
         | (u & 0xFF00) << 12
         | (u & 0xF000) << 16;
    v  =   (v & 0x00FF) << 4
         | (v & 0x000F)
         | (v & 0x0FF0) << 8
         | (v & 0xFF00) << 12
         | (v & 0xF000) << 16;

    // Store data
    *(unsigned*)(out)      = u;
    *(unsigned*)(out + 4)  = v;
    in                    += 4;
    out                   += 8;
  } while (in != past);
}

unsigned LutLo[256],
         LutHi[256];
void MakeLutLo(void) {
  for (unsigned i = 0, x; i < 256; ++i) {
    x        = i;
    x        = ((x & 0xF0) << 4) | (x & 0x0F);
    x       |= (x << 4);
    LutLo[i] = x;
  }
}
void MakeLutHi(void) {
  for (unsigned i = 0, x; i < 256; ++i) {
    x        = i;
    x        = ((x & 0xF0) << 20) | ((x & 0x0F) << 16);
    x       |= (x << 4);
    LutHi[i] = x;
  }
}

void ExpandLookupSmall(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  unsigned u, v;
  do {
    // Read in data
    u  = *(unsigned const*)in;
    v  = u >> 16;
    u &= 0x0000FFFF;

    // Do computation
    u = LutHi[u >> 8] | LutLo[u & 0xFF];
    v = LutHi[v >> 8] | LutLo[v & 0xFF];

    // Store data
    *(unsigned*)(out)      = u;
    *(unsigned*)(out + 4)  = v;
    in                    += 4;
    out                   += 8;
  } while (in != past);
}

void ExpandLookupSmallOneLUT(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  unsigned u, v;
  do {
    // Read in data
    u = *(unsigned const*)in;
    v = u >> 16;
    u &= 0x0000FFFF;

    // Do computation
    u = ((LutLo[u >> 8] << 16) | LutLo[u & 0xFF]);
    v = ((LutLo[v >> 8] << 16) | LutLo[v & 0xFF]);

    // Store data
    *(unsigned*)(out) = u;
    *(unsigned*)(out + 4) = v;
    in  += 4;
    out += 8;
  } while (in != past);
}

unsigned LutLarge[256 * 256];
void MakeLutLarge(void) {
  for (unsigned i = 0; i < (256 * 256); ++i)
    LutLarge[i] = LutHi[i >> 8] | LutLo[i & 0xFF];
}

void ExpandLookupLarge(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  unsigned u, v;
  do {
    // Read in data
    u  = *(unsigned const*)in;
    v  = u >> 16;
    u &= 0x0000FFFF;

    // Do computation
    u = LutLarge[u];
    v = LutLarge[v];

    // Store data
    *(unsigned*)(out)      = u;
    *(unsigned*)(out + 4)  = v;
    in                    += 4;
    out                   += 8;
  } while (in != past);
}

void ExpandAShelly(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  unsigned u, v, w, x;
  do {
    // Read in data
    u  = *(unsigned const*)in;
    v  = u >> 16;
    u &= 0x0000FFFF;

    // Do computation
    w  = (((u & 0xF0F) * 0x101) & 0xF000F) + (((u & 0xF0F0) * 0x1010) & 0xF000F00);
    x  = (((v & 0xF0F) * 0x101) & 0xF000F) + (((v & 0xF0F0) * 0x1010) & 0xF000F00);
    w += w * 0x10;
    x += x * 0x10;

    // Store data
    *(unsigned*)(out)      = w;
    *(unsigned*)(out + 4)  = x;
    in                    += 4;
    out                   += 8;
  } while (in != past);
}

void ExpandAShellyMulOp(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  unsigned u, v;
  do {
    // Read in data
    u = *(unsigned const*)in;
    v = u >> 16;
    u &= 0x0000FFFF;

    // Do computation
    u = ((((u & 0xF0F) * 0x101) & 0xF000F) + (((u & 0xF0F0) * 0x1010) & 0xF000F00)) * 0x11;
    v = ((((v & 0xF0F) * 0x101) & 0xF000F) + (((v & 0xF0F0) * 0x1010) & 0xF000F00)) * 0x11;

    // Store data
    *(unsigned*)(out) = u;
    *(unsigned*)(out + 4) = v;
    in += 4;
    out += 8;
  } while (in != past);
}

void ExpandSSE4(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  __m128i const mask0 = _mm_set1_epi16((short)0x8000),
                mask1 = _mm_set1_epi8(0x0F),
                mul = _mm_set1_epi16(0x0011);
  __m128i       u, v, w, x;
  do {
    // Read input into low 8 bytes of u and v
    u = _mm_load_si128((__m128i const*)in);

    v = _mm_unpackhi_epi8(u, u);      // Expand each single byte to two bytes
    u = _mm_unpacklo_epi8(u, u);      // Do it again for v
    w = _mm_srli_epi16(u, 4);         // Copy the value into w and shift it right half a byte
    x = _mm_srli_epi16(v, 4);         // Do it again for v
    u = _mm_blendv_epi8(u, w, mask0); // Select odd bytes from w, and even bytes from v, giving the the desired value in the upper nibble of each byte
    v = _mm_blendv_epi8(v, x, mask0); // Do it again for v
    u = _mm_and_si128(u, mask1);      // Clear the all the upper nibbles
    v = _mm_and_si128(v, mask1);      // Do it again for v
    u = _mm_mullo_epi16(u, mul);      // Multiply each 16-bit value by 0x0011 to duplicate the lower nibble in the upper nibble of each byte
    v = _mm_mullo_epi16(v, mul);      // Do it again for v

    // Write output
    _mm_store_si128((__m128i*)(out     ), u);
    _mm_store_si128((__m128i*)(out + 16), v);
    in  += 16;
    out += 32;
  } while (in != past);
}

void ExpandSSE4Unroll(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  __m128i const mask0  = _mm_set1_epi16((short)0x8000),
                mask1  = _mm_set1_epi8(0x0F),
                mul    = _mm_set1_epi16(0x0011);
  __m128i       u0, v0, w0, x0,
                u1, v1, w1, x1,
                u2, v2, w2, x2,
                u3, v3, w3, x3;
  do {
    // Read input into low 8 bytes of u and v
    u0 = _mm_load_si128((__m128i const*)(in     ));
    u1 = _mm_load_si128((__m128i const*)(in + 16));
    u2 = _mm_load_si128((__m128i const*)(in + 32));
    u3 = _mm_load_si128((__m128i const*)(in + 48));

    v0 = _mm_unpackhi_epi8(u0, u0);      // Expand each single byte to two bytes
    u0 = _mm_unpacklo_epi8(u0, u0);      // Do it again for v
    v1 = _mm_unpackhi_epi8(u1, u1);      // Do it again
    u1 = _mm_unpacklo_epi8(u1, u1);      // Again for u1
    v2 = _mm_unpackhi_epi8(u2, u2);      // Again for v1
    u2 = _mm_unpacklo_epi8(u2, u2);      // Again for u2
    v3 = _mm_unpackhi_epi8(u3, u3);      // Again for v2
    u3 = _mm_unpacklo_epi8(u3, u3);      // Again for u3
    w0 = _mm_srli_epi16(u0, 4);          // Copy the value into w and shift it right half a byte
    x0 = _mm_srli_epi16(v0, 4);          // Do it again for v
    w1 = _mm_srli_epi16(u1, 4);          // Again for u1
    x1 = _mm_srli_epi16(v1, 4);          // Again for v1
    w2 = _mm_srli_epi16(u2, 4);          // Again for u2
    x2 = _mm_srli_epi16(v2, 4);          // Again for v2
    w3 = _mm_srli_epi16(u3, 4);          // Again for u3
    x3 = _mm_srli_epi16(v3, 4);          // Again for v3
    u0 = _mm_blendv_epi8(u0, w0, mask0); // Select even bytes from w, and odd bytes from v, giving the the desired value in the upper nibble of each byte
    v0 = _mm_blendv_epi8(v0, x0, mask0); // Do it again for v
    u1 = _mm_blendv_epi8(u1, w1, mask0); // Again for u1
    v1 = _mm_blendv_epi8(v1, x1, mask0); // Again for v1
    u2 = _mm_blendv_epi8(u2, w2, mask0); // Again for u2
    v2 = _mm_blendv_epi8(v2, x2, mask0); // Again for v2
    u3 = _mm_blendv_epi8(u3, w3, mask0); // Again for u3
    v3 = _mm_blendv_epi8(v3, x3, mask0); // Again for v3
    u0 = _mm_and_si128(u0, mask1);       // Clear the all the upper nibbles
    v0 = _mm_and_si128(v0, mask1);       // Do it again for v
    u1 = _mm_and_si128(u1, mask1);       // Again for u1
    v1 = _mm_and_si128(v1, mask1);       // Again for v1
    u2 = _mm_and_si128(u2, mask1);       // Again for u2
    v2 = _mm_and_si128(v2, mask1);       // Again for v2
    u3 = _mm_and_si128(u3, mask1);       // Again for u3
    v3 = _mm_and_si128(v3, mask1);       // Again for v3
    u0 = _mm_mullo_epi16(u0, mul);       // Multiply each 16-bit value by 0x0011 to duplicate the lower nibble in the upper nibble of each byte
    v0 = _mm_mullo_epi16(v0, mul);       // Do it again for v
    u1 = _mm_mullo_epi16(u1, mul);       // Again for u1
    v1 = _mm_mullo_epi16(v1, mul);       // Again for v1
    u2 = _mm_mullo_epi16(u2, mul);       // Again for u2
    v2 = _mm_mullo_epi16(v2, mul);       // Again for v2
    u3 = _mm_mullo_epi16(u3, mul);       // Again for u3
    v3 = _mm_mullo_epi16(v3, mul);       // Again for v3

    // Write output
    _mm_store_si128((__m128i*)(out      ), u0);
    _mm_store_si128((__m128i*)(out +  16), v0);
    _mm_store_si128((__m128i*)(out +  32), u1);
    _mm_store_si128((__m128i*)(out +  48), v1);
    _mm_store_si128((__m128i*)(out +  64), u2);
    _mm_store_si128((__m128i*)(out +  80), v2);
    _mm_store_si128((__m128i*)(out +  96), u3);
    _mm_store_si128((__m128i*)(out + 112), v3);
    in  += 64;
    out += 128;
  } while (in != past);
}

void ExpandSSE2(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  __m128i const mask = _mm_set1_epi16((short)0xF00F),
                mul0 = _mm_set1_epi16(0x0011),
                mul1 = _mm_set1_epi16(0x1000);
  __m128i       u, v;
  do {
    // Read input into low 8 bytes of u and v
    u = _mm_load_si128((__m128i const*)in);

    v = _mm_unpackhi_epi8(u, u);      // Expand each single byte to two bytes
    u = _mm_unpacklo_epi8(u, u);      // Do it again for v

    u = _mm_and_si128(u, mask);
    v = _mm_and_si128(v, mask);
    u = _mm_mullo_epi16(u, mul0);
    v = _mm_mullo_epi16(v, mul0);
    u = _mm_mulhi_epu16(u, mul1);     // This can also be done with a right shift of 4 bits, but this seems to mesure faster
    v = _mm_mulhi_epu16(v, mul1);
    u = _mm_mullo_epi16(u, mul0);
    v = _mm_mullo_epi16(v, mul0);

    // write output
    _mm_store_si128((__m128i*)(out     ), u);
    _mm_store_si128((__m128i*)(out + 16), v);
    in  += 16;
    out += 32;
  } while (in != past);
}

void ExpandSSE2Unroll(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  __m128i const mask = _mm_set1_epi16((short)0xF00F),
                mul0 = _mm_set1_epi16(0x0011),
                mul1 = _mm_set1_epi16(0x1000);
  __m128i       u0, v0,
                u1, v1;
  do {
    // Read input into low 8 bytes of u and v
    u0 = _mm_load_si128((__m128i const*)(in     ));
    u1 = _mm_load_si128((__m128i const*)(in + 16));

    v0 = _mm_unpackhi_epi8(u0, u0);      // Expand each single byte to two bytes
    u0 = _mm_unpacklo_epi8(u0, u0);      // Do it again for v
    v1 = _mm_unpackhi_epi8(u1, u1);      // Do it again
    u1 = _mm_unpacklo_epi8(u1, u1);      // Again for u1

    u0 = _mm_and_si128(u0, mask);
    v0 = _mm_and_si128(v0, mask);
    u1 = _mm_and_si128(u1, mask);
    v1 = _mm_and_si128(v1, mask);

    u0 = _mm_mullo_epi16(u0, mul0);
    v0 = _mm_mullo_epi16(v0, mul0);
    u1 = _mm_mullo_epi16(u1, mul0);
    v1 = _mm_mullo_epi16(v1, mul0);

    u0 = _mm_mulhi_epu16(u0, mul1);
    v0 = _mm_mulhi_epu16(v0, mul1);
    u1 = _mm_mulhi_epu16(u1, mul1);
    v1 = _mm_mulhi_epu16(v1, mul1);

    u0 = _mm_mullo_epi16(u0, mul0);
    v0 = _mm_mullo_epi16(v0, mul0);
    u1 = _mm_mullo_epi16(u1, mul0);
    v1 = _mm_mullo_epi16(v1, mul0);

    // write output
    _mm_store_si128((__m128i*)(out     ), u0);
    _mm_store_si128((__m128i*)(out + 16), v0);
    _mm_store_si128((__m128i*)(out + 32), u1);
    _mm_store_si128((__m128i*)(out + 48), v1);

    in  += 32;
    out += 64;
  } while (in != past);
}

void ExpandAShellySSE4(unsigned char const *in, unsigned char const *past, unsigned char *out) {
  __m128i const zero      = _mm_setzero_si128(),
                v0F0F     = _mm_set1_epi32(0x0F0F),
                vF0F0     = _mm_set1_epi32(0xF0F0),
                v0101     = _mm_set1_epi32(0x0101),
                v1010     = _mm_set1_epi32(0x1010),
                v000F000F = _mm_set1_epi32(0x000F000F),
                v0F000F00 = _mm_set1_epi32(0x0F000F00),
                v0011 = _mm_set1_epi32(0x0011);
  __m128i       u, v, w, x;
  do {
    // Read in data
    u = _mm_load_si128((__m128i const*)in);
    v = _mm_unpackhi_epi16(u, zero);
    u = _mm_unpacklo_epi16(u, zero);

    // original source: ((((a & 0xF0F) * 0x101) & 0xF000F) + (((a & 0xF0F0) * 0x1010) & 0xF000F00)) * 0x11;
    w = _mm_and_si128(u, v0F0F);
    x = _mm_and_si128(v, v0F0F);
    u = _mm_and_si128(u, vF0F0);
    v = _mm_and_si128(v, vF0F0);
    w = _mm_mullo_epi32(w, v0101); // _mm_mullo_epi32 is what makes this require SSE4 instead of SSE2
    x = _mm_mullo_epi32(x, v0101);
    u = _mm_mullo_epi32(u, v1010);
    v = _mm_mullo_epi32(v, v1010);
    w = _mm_and_si128(w, v000F000F);
    x = _mm_and_si128(x, v000F000F);
    u = _mm_and_si128(u, v0F000F00);
    v = _mm_and_si128(v, v0F000F00);
    u = _mm_add_epi32(u, w);
    v = _mm_add_epi32(v, x);
    u = _mm_mullo_epi32(u, v0011);
    v = _mm_mullo_epi32(v, v0011);

    // write output
    _mm_store_si128((__m128i*)(out     ), u);
    _mm_store_si128((__m128i*)(out + 16), v);
    in  += 16;
    out += 32;
  } while (in != past);
}

int main() {
  unsigned char *const indat   = new unsigned char[DATA_SIZE_IN ],
                *const outdat0 = new unsigned char[DATA_SIZE_OUT],
                *const outdat1 = new unsigned char[DATA_SIZE_OUT],
                *      curout  = outdat0,
                *      lastout = outdat1,
                *      place;
  unsigned             start,
                       stop;

  place = indat + DATA_SIZE_IN - 1;
  do {
    *place = (unsigned char)rand();
  } while (place-- != indat);
  MakeLutLo();
  MakeLutHi();
  MakeLutLarge();

  for (unsigned testcount = 0; testcount < 1000; ++testcount) {
    // Solution posted by the asker
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandOrig(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandOrig:\t\t\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);

    // Dmitry's small lookup table solution
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandLookupSmall(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandSmallLUT:\t\t\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);
    if (memcmp(outdat0, outdat1, DATA_SIZE_OUT))
      std::cout << "INCORRECT OUTPUT" << std::endl;

    // Dmitry's small lookup table solution using only one lookup table
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandLookupSmallOneLUT(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandLookupSmallOneLUT:\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);
    if (memcmp(outdat0, outdat1, DATA_SIZE_OUT))
      std::cout << "INCORRECT OUTPUT" << std::endl;

    // Large lookup table solution
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandLookupLarge(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandLookupLarge:\t\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);
    if (memcmp(outdat0, outdat1, DATA_SIZE_OUT))
      std::cout << "INCORRECT OUTPUT" << std::endl;

    // AShelly's Interleave bits by Binary Magic Numbers solution
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandAShelly(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandAShelly:\t\t\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);
    if (memcmp(outdat0, outdat1, DATA_SIZE_OUT))
      std::cout << "INCORRECT OUTPUT" << std::endl;

    // AShelly's Interleave bits by Binary Magic Numbers solution optimizing out an addition
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandAShellyMulOp(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandAShellyMulOp:\t\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);
    if (memcmp(outdat0, outdat1, DATA_SIZE_OUT))
      std::cout << "INCORRECT OUTPUT" << std::endl;

    // My SSE4 solution
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandSSE4(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandSSE4:\t\t\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);
    if (memcmp(outdat0, outdat1, DATA_SIZE_OUT))
      std::cout << "INCORRECT OUTPUT" << std::endl;

    // My SSE4 solution unrolled
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandSSE4Unroll(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandSSE4Unroll:\t\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);
    if (memcmp(outdat0, outdat1, DATA_SIZE_OUT))
      std::cout << "INCORRECT OUTPUT" << std::endl;

    // My SSE2 solution
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandSSE2(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandSSE2:\t\t\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);
    if (memcmp(outdat0, outdat1, DATA_SIZE_OUT))
      std::cout << "INCORRECT OUTPUT" << std::endl;

    // My SSE2 solution unrolled
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandSSE2Unroll(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandSSE2Unroll:\t\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);
    if (memcmp(outdat0, outdat1, DATA_SIZE_OUT))
      std::cout << "INCORRECT OUTPUT" << std::endl;

    // AShelly's Interleave bits by Binary Magic Numbers solution implemented using SSE2
    start = clock();
    for (unsigned rerun = 0; rerun < RERUN_COUNT; ++rerun)
      ExpandAShellySSE4(indat, indat + DATA_SIZE_IN, curout);
    stop = clock();
    std::cout << "ExpandAShellySSE4:\t\t" << (((stop - start) / 1000) / 60) << ':' << (((stop - start) / 1000) % 60) << ":." << ((stop - start) % 1000) << std::endl;

    std::swap(curout, lastout);
    if (memcmp(outdat0, outdat1, DATA_SIZE_OUT))
      std::cout << "INCORRECT OUTPUT" << std::endl;
  }

  delete[] indat;
  delete[] outdat0;
  delete[] outdat1;
  return 0;
}

注意:

我最初在这里有一个SSE4实现。我找到了一种使用SSE2实现此方法的方法,这种方法更好,因为它将在更多平台上运行。 SSE2实现也更快。因此,最上面介绍的解决方案现在是SSE2实现,而不是SSE4。在性能测试或编辑历史记录中仍可以看到SSE4实现。

09-28 06:49