为了简单起见,我将 500 个样本从 10,000 多个行的数据集中划分出来。请将 X 和 y 复制并粘贴到您的 IDE 中。

X =

array([ -8.93,  -0.17,   1.47,  -6.13,  -4.06,  -2.22,  -2.11,  -0.25,
         0.25,   0.49,   1.7 ,  -0.77,   1.07,   5.61, -11.95,  -3.8 ,
        -3.42,  -2.55,  -2.44,  -1.99,  -1.7 ,  -0.98,  -0.91,  -0.91,
        -0.25,   1.7 ,   2.88,  -6.9 ,  -4.07,  -1.35,  -0.33,   0.63,
         0.98,  -3.31,  -2.61,  -2.61,  -2.17,  -1.38,  -0.77,  -0.25,
        -0.08,  -1.2 ,  -3.1 ,  -1.07,  -0.7 ,  -0.41,  -0.33,   0.41,
         0.77,   0.77,   1.14,   2.17,  -7.92,  -3.8 ,  -2.11,  -2.06,
        -1.2 ,  -1.14,   0.  ,   0.56,   1.47,  -1.99,  -0.17,   2.44,
        -5.87,  -3.74,  -3.37,  -2.88,  -0.49,  -0.25,  -0.08,   0.33,
         0.33,   0.84,   1.64,   2.06,   2.88,  -4.58,  -1.82,  -1.2 ,
         0.25,   0.25,   0.63,   2.61,  -5.36,  -1.47,  -0.63,   0.  ,
         0.63,   1.99,   1.99, -10.44,  -2.55,   0.33,  -8.93,  -5.87,
        -5.1 ,  -2.78,  -0.25,   1.47,   1.93,   2.17,  -5.36,  -5.1 ,
        -3.48,  -2.44,  -2.06,  -2.06,  -1.82,  -1.58,  -1.58,  -0.63,
        -0.33,   0.  ,   0.17,  -3.31,  -0.25,  -5.1 ,  -3.8 ,  -2.55,
        -1.99,  -1.7 ,  -0.98,  -0.91,  -0.63,  -0.25,   0.77,   0.91,
         0.91,  -9.43,  -8.42,  -2.72,  -2.55,  -1.26,   0.7 ,   0.77,
         1.07,   1.47,   1.7 ,  -1.82,  -1.47,   0.17,   1.26,  -5.36,
        -1.52,  -1.47,  -0.17,  -3.48,  -3.31,  -2.06,  -1.47,   0.17,
         0.25,   1.7 ,   2.5 ,  -9.94,  -6.08,  -5.87,  -3.37,  -2.44,
        -2.17,  -1.87,  -0.98,  -0.7 ,  -0.49,   0.41,   1.47,   2.28,
       -14.95, -12.44,  -6.39,  -4.33,  -3.8 ,  -2.72,  -2.17,  -1.2 ,
         0.41,   0.77,   0.84,   2.51,  -1.99,  -1.7 ,  -1.47,  -1.2 ,
         0.49,   0.63,   0.84,   0.98,   1.14,   2.5 ,  -2.06,  -1.26,
        -0.33,   0.17,   4.58,  -7.41,  -5.87,   1.2 ,   1.38,   1.58,
         1.82,   1.99,  -6.39,  -2.78,  -2.67,  -1.87,  -1.58,  -1.47,
         0.84, -10.44,  -7.41,  -3.05,  -2.17,  -1.07,  -1.07,  -0.91,
         0.25,   1.82,   2.88,  -6.9 ,  -1.47,   0.33,  -8.42,  -3.8 ,
        -1.99,  -1.47,  -1.47,  -0.56,   0.17,   0.17,   0.25,   0.56,
         4.58,  -3.48,  -2.61,  -2.44,  -0.7 ,   0.63,   1.47,   1.82,
       -13.96,  -9.43,  -2.67,  -1.38,  -0.08,   0.  ,   1.82,   3.05,
        -4.58,  -3.31,  -0.98,  -0.91,  -0.7 ,   0.77,  -0.7 ,  -0.33,
         0.56,   1.58,   1.7 ,   2.61,  -4.84,  -4.84,  -4.32,  -2.88,
        -1.38,  -0.98,  -0.17,   0.17,   0.49,   2.44,   4.32,  -3.48,
        -3.05,   0.56,  -8.42,  -3.48,  -2.61,  -2.61,  -2.06,  -1.47,
        -0.98,   0.  ,   0.08,   1.38,   1.93,  -9.94,  -2.72,  -1.87,
        -1.2 ,  -1.07,   1.58,   4.58,  -6.64,  -2.78,  -0.77,  -0.7 ,
        -0.63,   0.49,   1.07,  -8.93,  -4.84,  -1.7 ,   1.76,   3.31,
       -11.95,  -3.16,  -3.05,  -1.82,  -0.49,  -0.41,   0.56,   1.58,
       -13.96,  -3.05,  -2.78,  -2.55,  -1.7 ,  -1.38,  -0.91,  -0.33,
         1.2 ,   1.32,   1.47,  -2.06,  -1.82,  -7.92,  -6.33,  -4.32,
        -3.8 ,  -1.93,  -1.52,  -0.98,  -0.49,  -0.33,   0.7 ,   1.52,
         1.76,  -8.93,  -7.41,  -2.88,  -2.61,  -2.33,  -1.99,  -1.82,
        -1.64,  -0.84,   1.07,   2.06,  -3.96,  -2.44,  -1.58,   0.  ,
        -3.31,  -2.61,  -1.58,  -0.25,   0.33,   0.56,   0.84,   1.07,
        -1.58,  -0.25,   1.35,  -1.99,  -1.7 ,  -1.47,  -1.47,  -0.84,
        -0.7 ,  -0.56,  -0.33,   0.56,   0.63,   1.32,   2.28,   2.28,
        -2.72,  -0.25,   0.41,  -6.9 ,  -4.42,  -4.32,  -1.76,  -1.2 ,
        -1.14,  -1.07,   0.56,   1.32,   1.52, -14.97,  -7.41,  -5.1 ,
        -2.61,  -1.93,  -0.98,   0.17,   0.25,   0.41,  -4.42,  -2.61,
        -0.91,  -0.84,   2.39,  -2.61,  -1.32,   0.41,  -6.9 ,  -5.61,
        -4.06,  -3.31,  -1.47,  -0.91,  -0.7 ,  -0.63,   0.33,   1.38,
         2.61,  -2.29,   3.06,   4.44, -10.94,  -4.32,  -3.42,  -2.17,
        -1.7 ,  -1.47,  -1.32,  -1.07,  -0.7 ,   0.  ,   0.77,   1.07,
        -3.31,  -2.88,  -2.61,  -1.47,  -1.38,  -0.63,  -0.49,   1.07,
         1.52,  -3.8 ,  -1.58,  -0.91,  -0.7 ,   0.77,   3.42,  -8.42,
        -2.88,  -1.76,  -1.76,  -0.63,  -0.25,   0.49,   0.63,  -6.9 ,
        -4.06,  -1.82,  -1.76,  -1.76,  -1.38,  -0.91,  -0.7 ,   0.17,
         1.38,   1.47,   1.47, -11.95,  -0.98,  -0.56, -14.97,  -9.43,
        -8.93,  -2.72,  -2.61,  -1.64,  -1.32,  -0.56,  -0.49,   0.91,
         1.2 ,   1.47,  -3.8 ,  -3.06,  -2.51,  -1.04,  -0.33,  -0.33,
        -3.31,  -3.16,  -3.05,  -2.61,  -1.47,  -1.07,   2.17,   3.1 ,
        -2.61,  -0.25,  -3.85,  -2.44])

y =
array([1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0,
       1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1,
       0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1,
       1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,
       0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1,
       1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1,
       1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0,
       0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
       0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
       1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0,
       0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1,
       1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0,
       1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
       0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
       1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1,
       1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1,
       0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,
       0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0,
       0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0,
       0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,
       1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1])

初始化和训练:
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)

交叉验证:
from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y, cv=10, scoring='r2').mean()



看看它是否接近模型的真实R2。我这样做了:
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=None, shuffle=False)

r2_score(y_test, model.predict_proba(X_test)[:,1], multioutput='variance_weighted')



这个 R2 对模型的拟合优度更有意义,看起来两个 R2 只是一个 +/- 符号开关,但事实并非如此。在我使用更大样本的模型中,R2 cross-val 为 -0.24,R2 test 为 0.18。而且,当我添加一个似乎有利于模型的功能时,R2 测试上升而 R2 交叉值下降

此外,如果您将 LogisticRegression 切换为 LinearRegression,R2 cross-val 现在为正值并且接近 R2 测试。是什么导致了这个问题?

最佳答案

TLDR:R2 可能为负,并且您误解了 train_test_split 结果。

我将在下面解释这两种说法。
cross_val_score 符号翻转,用于 errorloss 指标

docs ,您可以看到 cross_val_score 实际上翻转了某些指标的符号。但仅适用于 errorloss 指标(越低越好),不适用于 score 指标(越高越好):



由于 r2score 指标,因此它不会翻转符号。您正在交叉验证中获得 -0.33。请注意,这是正常的。从 r2_score docs :



所以这将我们引向第二部分:为什么使用 CV 和训练/测试分割得到如此不同的结果?

CV 和训练/测试拆分结果之间的差异

使用 train_test_split 获得更好结果的原因有两个。

评估 r2 的概率而不是类(您使用 predict_proba 而不是 predict 可以减少错误的危害:

print(r2_score(y_test, model.predict_proba(X_test)[:,1], multioutput='variance_weighted'))
 0.19131536389654913

尽管:
 print(r2_score(y_test, model.predict(X_test)))
 -0.364200082678793

10 折叠 cv 的平均值,不检查方差,这是高的。如果你检查方差和结果的细节,你会发现方差很大:
scores = cross_val_score(model, X, y, cv=10, scoring='r2')
scores
array([-0.67868339, -0.03918495,  0.04075235, -0.47783251, -0.23152709,
   -0.39573071, -0.72413793, -0.66666667,  0.        , -0.16666667])

scores.mean(), scores.std() * 2
(-0.3339677563815496, 0.5598543351649792)

希望有帮助!

关于python - 交叉验证给出负 R2?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/53423383/

10-12 22:02