我正在尝试使用Scatter
将矩阵列发送到其他进程。下面的代码非常适合行,因此为了以最小的修改发送列,我使用了Numpy转置功能。但是,这似乎没有任何作用,除非我为矩阵创建了一个完整的副本(您可以想象,它破坏了目的)。
下面的3个最小示例来说明问题(必须运行3个进程!)。
散布行(按预期工作):
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
A = np.zeros((3,3))
if rank==0:
A = np.matrix([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]])
local_a = np.zeros(3)
comm.Scatter(A, local_a, root=0)
print "process", rank, "has", local_a
提供输出:
process 0 has [ 1. 2. 3.]
process 1 has [ 4. 5. 6.]
process 2 has [ 7. 8. 9.]
散列(无效,仍散行...):
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
A = np.zeros((3,3))
if rank==0:
A = np.matrix([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]]).T
local_a = np.zeros(3)
comm.Scatter(A, local_a, root=0)
print "process", rank, "has", local_a
提供输出:
process 0 has [ 1. 2. 3.]
process 1 has [ 4. 5. 6.]
process 2 has [ 7. 8. 9.]
分散列(有效,但似乎毫无意义):
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
A = np.zeros((3,3))
if rank==0:
A = np.matrix([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]]).T.copy()
local_a = np.zeros(3)
comm.Scatter(A, local_a, root=0)
print "process", rank, "has", local_a
最后给出所需的输出:
process 0 has [ 1. 4. 7.]
process 2 has [ 3. 6. 9.]
process 1 has [ 2. 5. 8.]
有没有一种简单的方法可以发送列而无需复制整个矩阵?
对于上下文,我在
mpi4py
tutorial中进行练习5。如果您想知道,我的完整解决方案(如上面的第3点那样浪费内存)是这样的:comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
A = np.zeros((3,3))
v = np.zeros(3)
result = np.zeros(3)
if rank==0:
A = np.array([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]]).T.copy()
v = np.array([0.1,0.01,0.001])
# Scatter the columns of the matrix
local_a = np.zeros(3)
comm.Scatter(A, local_a, root=0)
# Scatter the elements of the vector
local_v = np.array([0.])
comm.Scatter(v, local_v, root=0)
print "process", rank, "has A_ij =", local_a, "and v_i", local_v
# Multiplication
local_result = local_a * local_v
# Add together
comm.Reduce(local_result, result, op=MPI.SUM)
print "process", rank, "finds", result, "(", local_result, ")"
if (rank==0):
print "The resulting vector is"
print " ", result, "computed in parallel"
print "and", np.dot(A.T,v), "computed serially."
这是@Sajid请求的内存配置文件测试:
我的解决方案3(给出正确答案):
0.027 MiB A = np.array([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]]).T.copy()0.066 MiB comm.Scatter(A, local_a, root=0)
总计= 0.093 MiB
另一个类似的解决方案(给出正确答案):
0.004 MiB A = np.array([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]])0.090 MiB comm.Scatter(A.T.copy(), local_a, root=0)
总计= 0.094 MiB
@Sajid的解决方案(给出正确答案):
0.039 MiB A[:,:] = np.transpose(np.array([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]]))0.062 MiB comm.Scatter(A, local_a, root=0)
总计= 0.101 MiB
我的解决方案2(给出错误的答案):
0.004 MiB A = np.array([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]])0.066 MiB comm.Scatter(A, local_a, root=0)
总计= 0.070 MiB
(我仅从各行复制了内存增量,其中代码版本之间的内存增量有所不同。很明显,这全都是来自根节点的。)
显然,所有正确的解决方案都必须将数组复制到内存中。这是次优的,因为我想要的只是分散列而不是行。
最佳答案
数据未正确复制到A可能是一个问题,请尝试以下操作:
import numpy as np
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
A = np.zeros((3,3))
if rank==0:
A[:,:] = np.transpose(np.matrix([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]]))
local_a = (np.zeros(3))
comm.Scatter(A, local_a, root=0)
print("process", rank, "has", local_a)
当然,如果您使用的是python2,请更改print语句。
关于python - MPI-矩阵的发送和接收列,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/47400098/