我有一个包含大约一百万个观察值的大型数据集,以定义的观察类型为键。在数据集中,大约有 900,000 个观测值具有畸形的观测值类型,其中 50 个可接受的观测值类型有约 850 个(不正确的)变化。

keys <- c("DAY", "EVENING","SUNSET", "DUSK","NIGHT", "MIDNIGHT", "TWILIGHT", "DAWN","SUNRISE", "MORNING")

entries <- c("Day", "day", "SUNSET/DUSK", "DAYS", "dayy", "EVEN", "Evening", "early dusk", "late day", "nite", "red dawn", "Evening Sunset", "mid-night", "midnight", "midnite","DAY", "EVENING","SUNSET", "DUSK","NIGHT", "MIDNIGHT", "TWILIGHT", "DAWN","SUNRISE", "MORNING")

使用 gsub 类似于用手铲挖地下室,在我自己的情况下,是一把坏掉的铲子,因为我对 r 和复杂的正则表达式非常陌生。简单的回退(对我来说)是为每个接受的观察类型编写一个 gsub 语句,但这似乎不必要地繁琐,因为它需要 50 个语句。

我想使用 levenshtein.distancestringdist 用最短距离字符串替换违规条目。运行 z <- for (i in length(y)) { z[i] = levenshtein.distance(y[i], x)} 不起作用,因为它试图将 (length(x)) 结果传递给每个 y[i]。

如何以最小距离返回结果?我已经看到 function(x) x[2] 返回系列中的第二个结果,但是如何获得最低的结果?

最佳答案

你可以试试:

library(stringdist)
m <- stringdistmatrix(entries, keys, method = "lv")
a <- keys[apply(m, 1, which.min)]

如果您想尝试不同的算法,请查看 ?'stringdist-metrics'
或者按照@RHertel 在评论中提到的:
b <- keys[apply(adist(entries, keys), 1, which.min)]

来自 adist() 文档:



这两种方法产生相同的结果:
> identical(a, b)
#[1] TRUE

关于regex - r stringdist 或 levenshtein.distance 来替换字符串,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/33284322/

10-12 19:22