我希望有人能指出我正确的方向。首先,我不是统计学家。我是一名软件开发人员,我的任务是尝试使用 R 重现 SPSS 因子分析的结果(使用 PC 提取和方差最大旋转)。我在过去一周只接触过 R,所以我试图找到我的方式。

我确实发现 2010 年的这篇文章非常有帮助:https://stats.stackexchange.com/questions/612/is-psychprincipal-function-still-pca-when-using-rotation

我能够毫无问题地重现组件矩阵值,但是我需要计算“旋转”的组件矩阵值。同样,我需要使用最大方差旋转。创建组件矩阵值的最后一行是:

pfa.eigen$vectors [ , 1:factors ] *
    diag ( sqrt (pfa.eigen$values [ 1:factors ] ), factors, factors )

如果有人可以帮助我使用正确的语法来创建旋转的组件矩阵值,我将永远感激不尽!

好的 - 在这里 - 这是我正在使用的数据(120 列,31 行):
-36 -30 -30 -30 -25 -48 -33 -30 -20 21  -1  4   0   -27 -11 25  10  10  38  46  -4  10  -21 -15 -2  -14 -6  -5  -13 37  -16 -26 -25 -18 -14 -23 -20 -20 -14 -19 -17 -9  -12 32  -14 -22 -14 -27 -19 14  -17 -1  -25 -22 -3  0   29  3   43  59  53  35  -21 60  12  -35 -9  -29 -2  -25 15  45  35  40  -17 22  7   -11 14  -18 11  15  6   6   15  20  -5  8   3   -11 4   -2  -18 13  31  -16 1   -8  -8  3   -15 -18 28  -3  -13 -9  7   -2  2   12  28  29  21  18  64  -10 13  -1  10  10
-32 -30 -28 -33 -30 -37 -33 -27 -21 13  0   25  -13 -26 6   25  20  4   33  50  -8  11  -23 -15 -21 -17 8   -15 -16 35  -17 -22 -23 -23 -13 -26 -18 -22 -22 -26 -15 -15 -18 24  -17 -25 -24 -23 -20 12  -13 -11 -21 -25 -7  22  50  -15 47  46  45  37  -19 51  6   -30 -12 -34 -5  -29 17  37  25  41  -6  17  1   -9  14  -10 17  26  2   34  18  22  7   15  14  -16 -9  -10 -16 17  14  -19 2   -15 -8  -7  -23 -15 38  -6  -14 0   12  -7  -3  3   24  24  49  27  45  -8  22  -15 29  53
-26 -19 -22 -19 -15 -40 -28 -23 -20 23  1   10  -1  -18 -7  11  18  11  23  33  -7  21  -22 -17 -2  -11 18  -2  1   63  -12 -23 -19 -13 -13 -24 -20 -16 -20 -17 -16 -10 -10 19  -11 -21 -6  -15 -13 12  -7  -10 -14 -19 0   7   8   -4  40  35  29  35  -10 47  3   -32 -5  -26 -8  -22 3   24  16  8   -11 18  9   -5  13  4   4   21  1   5   26  4   -4  17  21  -16 10  8   -16 12  10  -18 3   -10 -13 -1  -16 -17 44  14  -14 -7  8   -9  8   6   17  8   18  4   36  0   10  -6  -6  26
-24 -20 -29 -22 -22 -41 -22 -26 -18 15  -2  11  2   -9  1   15  10  10  26  27  -7  17  -17 -12 -2  -12 16  -2  -8  42  -11 -23 -20 -11 -13 -20 -18 -22 -18 -21 -19 -8  -6  17  -7  -15 -8  -14 -15 9   -9  -2  -19 -15 -5  2   16  -6  41  44  30  29  -18 57  -4  -25 -6  -25 -6  -20 3   22  20  4   -11 11  5   -7  11  -3  11  15  3   9   30  2   -3  18  25  -14 8   -7  -14 3   0   -19 2   -13 -11 -5  -19 -18 39  4   -13 0   2   -10 9   1   32  22  28  30  39  -7  2   -6  22  36
-25 -26 -28 -23 -13 -38 -26 -21 -14 4   -3  -11 -15 -21 -4  13  18  7   18  42  -11 -1  -15 -12 -9  -14 4   -5  -8  46  -16 -17 -17 -20 -11 -20 -19 -13 -12 -12 -14 -14 -17 18  -6  -16 -7  -16 -14 13  -15 -9  -11 -18 -1  -3  32  -13 45  59  37  32  -16 43  4   -26 -7  -21 -8  -22 21  43  26  27  -8  10  6   -7  4   -13 11  6   5   13  1   13  0   7   14  -13 -1  0   -11 15  22  -11 3   -3  -11 2   -12 -15 37  2   -11 -4  7   1   6   11  32  27  6   27  41  -10 16  -7  1   13
32  2   43  41  33  61  1   23  -13 19  17  16  -2  -13 18  -9  16  -12 -5  -10 18  21  -9  -5  -12 -12 -4  -14 -13 -1  -8  -15 -13 -16 -10 -14 -11 -14 -12 -13 -6  8   -8  -4  6   -4  9   -10 -10 20  -2  6   -10 27  4   -8  -12 -13 -10 -15 -14 55  -10 52  7   -17 5   -13 -4  -14 -9  -13 -8  -11 8   6   3   3   7   -3  1   6   -16 6   12  -9  -12 42  26  -13 -5  -6  -9  -8  -8  -7  -3  -9  -5  -7  -8  -8  6   -1  -8  -8  -2  -11 -10 -16 -11 -7  8   -9  -12 8   9   -2  -8  15
18  14  18  38  34  12  45  47  -21 -5  4   -12 35  44  -7  -26 -10 -10 -16 -13 18  7   21  17  -13 -16 -22 -22 -14 -18 -17 -3  38  -4  1   29  0   -11 -9  -17 -4  28  0   15  43  35  41  35  17  -17 -18 -16 -21 27  10  -19 -22 -11 -18 -20 -18 -21 36  -26 -15 38  2   30  -11 24  -5  -8  -13 0   6   -5  -3  5   -4  -11 -5  -21 -24 -24 -17 -21 -9  -13 11  -14 -6  -12 -10 -15 -5  -14 -14 -13 -4  -13 -13 14  -24 -22 48  27  -16 -7  8   -13 14  -5  20  23  -12 -1  -7  -15 -16 1
19  20  19  11  27  34  42  29  -9  39  20  16  31  20  9   -13 2   -2  17  -3  26  51  45  30  -21 -13 -18 -21 -20 -22 -18 -22 -22 -22 -18 -21 -20 -22 -18 -22 -14 -11 1   15  36  23  27  23  30  -5  -8  -6  -4  10  0   -18 0   -16 -11 -5  3   -27 1   -26 -20 -23 9   -3  -10 -4  -1  -6  -3  -7  25  40  36  39  48  6   9   -13 -19 -23 -17 7   -24 27  67  -23 -13 -13 -18 -8  23  -17 -19 -4  11  -20 -20 -17 -9  -16 8   -10 -3  -21 7   -19 -12 -7  -22 -15 -11 -7  4   -7  -19 -19
1   24  32  22  27  42  46  44  -10 19  36  7   16  -2  0   7   6   -14 -10 -10 15  29  24  13  -12 -12 -13 -16 -14 -14 -13 -20 -10 -17 -11 -18 -13 -11 -7  -15 -7  19  10  7   40  38  36  40  45  -5  -17 -7  -12 13  -2  -5  -12 -13 -10 -15 -16 -13 -2  -16 -12 -21 -1  -18 -14 -15 -11 -13 -16 -10 8   4   10  12  20  2   0   -10 -16 -16 -9  -2  -11 30  72  -13 -5  -8  -8  -14 -8  0   -13 -7  4   -9  -12 -11 -14 -11 20  1   -6  -10 -5  -14 -14 -10 -2  -3  -14 -6  -2  -11 -14 16
-36 -22 -58 -46 -77 -49 -47 -57 -19 -20 -37 -12 -10 -16 -19 -16 -19 15  -16 -25 -21 -25 -14 10  44  27  50  54  47  -36 41  56  41  51  -10 46  43  53  48  45  43  -44 2   -37 -39 -26 -40 -31 -25 29  -6  -6  35  -36 8   -1  7   5   -1  -12 -25 -24 19  -32 34  3   4   -18 32  -10 13  -4  4   -19 -8  -18 -7  2   -18 19  18  30  43  37  -24 11  37  -42 -33 36  21  47  -5  -13 -8  34  34  48  -2  3   31  -23 -27 23  -4  -1  4   41  13  21  -20 -24 -27 -15 -21 10  -9  24  -10 5
33  16  17  40  32  28  16  21  -10 -11 -22 -12 -17 -16 -15 -23 -16 2   -15 -18 9   -12 -4  -9  6   -6  9   3   -2  44  45  27  29  18  44  19  30  24  14  5   19  33  24  -18 12  -1  14  -7  -13 9   15  6   19  38  11  -22 -20 -9  -17 -22 -15 -15 -5  -17 -1  -20 19  -21 -1  -15 -6  -17 -12 -14 -4  -15 -15 -10 -13 2   -13 -14 -14 -19 -26 -22 9   10  -16 7   9   3   -5  10  -8  10  16  -1  -7  2   -5  -15 6   8   -19 -18 6   8   -13 -4  -11 -10 -16 -4  -14 3   -5  14  -14 -21
10  30  22  11  37  36  36  18  -4  -3  38  0   -11 -5  -10 -2  7   -12 -7  -8  4   0   0   -9  -18 -7  -16 -14 -9  -14 -15 -16 -13 -20 -7  -16 -13 -9  -14 -15 -12 1   -9  6   48  28  35  39  35  -8  5   -14 6   7   6   5   -8  -11 -6  -11 -5  -15 -13 -17 -11 -13 6   2   -3  -2  -5  -9  -9  -7  6   -8  -1  -11 -7  -3  -6  -8  20  -4  0   14  -10 17  -1  -11 -7  -7  -5  -9  -10 -8  -12 -11 -5  -10 -10 98  -10 -7  64  34  -3  -15 -1  -8  -13 -8  2   -8  -13 3   -1  -2  -4  -4
2   -2  -4  6   10  14  -4  -8  22  -1  4   13  -6  18  -16 7   10  0   1   -2  4   10  -11 -10 -7  -5  -11 -11 -6  -4  -9  -10 -14 1   -11 -9  -14 -8  -7  -12 -7  -17 -12 0   -2  -6  1   8   -4  -16 6   -16 14  3   -10 36  36  -10 -11 7   6   -16 -9  -22 -13 58  -11 59  10  38  -3  -8  2   -8  -12 0   4   -10 -4  -1  -4  11  18  40  8   3   3   12  -9  -8  -4  -9  -7  -4  -11 -4  -15 -9  -10 -4  8   6   0   0   12  5   2   -6  -4  -9  2   -6  3   -3  -11 -2  2   4   7   16
9   -3  -1  8   29  -9  3   14  4   -12 -10 -3  -4  9   -16 -1  5   0   -8  -5  12  -9  -9  -9  0   5   10  4   4   -15 -3  -4  2   6   -3  20  -10 -6  -8  6   2   -17 -7  8   10  -9  12  -6  -13 -11 -8  -13 1   22  11  -5  -11 -13 -7  -9  -7  -14 -7  -15 -12 64  13  46  21  42  -2  -4  1   -3  2   -15 -8  -11 -17 -3  4   -15 10  -6  -11 -3  -2  -10 -17 7   -1  -5  13  -13 -10 4   -7  -7  -6  1   28  -9  -15 11  -7  13  -3  -2  4   12  6   7   7   -6  -3  3   -4  3   18  -4
-15 -18 -19 -21 -11 -23 -18 -25 11  14  4   12  11  9   -18 21  21  -4  32  16  -7  34  -14 -16 -18 -23 -6  -15 -16 -6  -13 -21 -21 -19 -14 -22 -19 -20 -19 -22 -18 -25 -21 24  10  -19 12  -19 -10 3   -18 -15 -14 -14 -12 38  76  -14 26  33  45  -21 -16 -20 -13 15  -9  31  -2  23  -7  8   14  3   -10 11  5   -9  19  16  2   25  38  41  30  25  8   25  41  -17 -8  -9  -15 0   -3  -21 -16 -18 -12 -10 -2  7   37  3   -9  6   -1  -17 -3  -12 10  21  12  4   22  5   2   -6  -2  8
62  -5  15  14  29  22  5   10  -14 14  -3  16  15  27  -11 -5  27  -13 1   2   17  6   -8  -13 -10 -8  -9  -13 -11 -15 -8  -13 -12 -11 -9  -10 -11 -11 -12 -14 -6  -15 -11 3   17  -11 14  -11 -9  -12 -9  -3  -4  32  -1  11  -11 -9  -4  -13 -14 -12 -7  -15 -4  41  0   54  1   38  -9  -9  -2  -5  -7  7   -2  -9  5   6   10  5   -12 0   40  -9  -8  56  -4  -9  -5  -9  -8  -7  -4  -14 -11 -8  -7  -9  -7  1   -10 -6  0   7   -2  -13 -6  -14 -5  9   14  -2  -11 5   5   -3  11  3
12  12  15  8   49  42  7   15  -15 -8  51  7   -12 -5  -11 -1  29  -13 -4  -7  15  4   -7  -10 -6  -8  -8  -10 -9  -12 -10 -9  -11 -12 -8  -11 -8  -7  -11 -9  -8  -15 -5  10  1   22  4   48  15  -8  3   -9  -5  13  3   21  -12 -11 -12 -13 -12 -12 -11 -13 -7  -12 3   0   -7  -1  -4  -7  -8  -5  3   -2  -1  -10 -1  0   -3  -2  -5  5   20  3   -8  38  -12 -7  -7  -7  -1  -11 -8  -2  -9  -7  -6  -8  -4  100 -13 -5  18  40  -5  -10 -6  -4  -9  -6  -1  -9  -6  3   -4  0   -5  7
29  -7  -19 -16 -8  -14 -10 -14 -10 -9  7   -10 0   11  -9  -5  -3  0   -6  -8  -5  3   -6  1   -2  -8  -8  -10 0   -8  5   -2  27  4   21  29  12  10  4   0   3   7   -2  -8  -12 35  -2  27  34  -14 -4  -11 9   -9  11  18  -11 -4  -11 -11 -11 -12 -2  -13 -9  49  20  25  0   33  -11 -9  -7  -6  -10 -8  -9  -9  -8  -3  -6  -6  -16 -10 -17 -13 -1  9   -10 2   0   -2  -2  -6  -12 3   -3  -4  -6  -2  -2  70  -10 4   26  20  -3  -5  -1  -5  -4  2   6   -5  -9  3   -2  3   6   -6
-1  7   -14 2   -4  -49 17  2   -14 -25 20  -25 -10 8   -18 -8  -31 6   -16 -17 -5  -26 14  46  21  30  -13 34  22  -24 11  43  15  39  64  53  17  8   18  32  17  -4  19  -18 11  41  16  29  45  -28 -11 -19 45  -10 11  -14 -22 18  -22 -17 -26 -28 9   -27 -23 -17 17  -14 0   1   -1  -9  -11 -7  -9  -23 -15 -10 -18 -9  -17 -19 -12 -10 -34 -21 16  -41 -28 19  -2  -4  28  -15 -16 0   -15 15  -12 -14 0   25  -24 -12 57  50  -6  26  47  10  -1  -10 -10 -15 -8  -1  -10 7   -15 -23
0   -17 -20 -18 -28 -12 -14 -19 59  -11 -10 -12 -9  8   -9  25  -9  13  -7  -6  -4  -11 -5  -2  -2  0   -4  -4  2   -7  45  1   8   11  -4  -1  7   -8  3   8   0   -1  9   -9  -10 -11 -9  -1  -9  -8  15  12  19  2   4   1   -9  -1  2   -4  -2  -10 -6  -14 -8  45  19  20  7   24  -7  -3  -2  -5  -8  -13 0   -6  -10 29  -2  -4  -9  -10 -9  -5  7   -14 -7  10  -5  -3  16  31  5   -4  2   -7  -5  23  21  -5  35  11  -6  -11 -5  0   -12 -2  2   10  -2  -2  -10 -4  -7  -3  7   -4
-13 -4  -23 -6  5   -31 -7  -9  33  -20 -16 -16 -16 11  -18 12  -16 0   -15 -17 -13 -15 -14 -12 30  49  -13 26  30  -17 6   41  -9  40  -7  6   -1  8   31  24  2   -18 18  -19 1   -7  -1  -13 -9  -18 -16 -15 22  -14 -6  10  11  46  -10 -10 -14 -20 -15 -20 -15 46  -11 49  0   40  -12 -11 -9  -18 -12 -20 -12 -17 -18 -8  -14 -1  22  27  -19 -10 26  -28 -17 32  14  26  30  1   -11 24  -5  17  -11 22  38  -14 -13 -3  10  8   -8  23  12  16  2   -16 -15 -11 -13 8   -11 -4  -6  -10
47  24  54  52  38  62  54  34  -17 16  -2  9   18  -5  32  -18 0   -16 -10 -15 4   13  3   -2  -15 -12 1   -18 -18 -17 -9  -17 -16 -17 -11 -19 -11 -14 -17 -15 -13 18  14  -8  -5  24  8   7   -4  1   36  24  -13 6   -5  -12 -10 -12 -12 -15 -16 51  7   36  49  -20 -4  -21 -14 -19 -14 -15 -14 -13 2   4   -8  8   18  6   17  -9  -11 -17 12  -9  -16 23  20  -16 -8  -8  -11 -12 -12 9   -5  -11 61  -13 -10 -11 -15 -5  -13 -16 -5  -14 -12 -15 -10 -11 -6  2   -14 -2  -1  -1  -9  -14
15  44  57  25  22  50  36  37  25  -4  14  1   3   6   72  -16 0   -12 -10 -4  18  -9  55  15  -13 -10 -15 -19 -13 -17 -17 -19 -14 -23 -11 -20 -16 -9  -12 -16 -11 27  5   9   6   14  9   20  5   16  23  19  -16 31  -10 -14 -12 43  -15 -14 -11 -2  -6  -12 -4  -24 -2  -18 -9  -19 0   -12 -9  -1  40  11  15  35  3   -5  -7  -13 5   -22 4   10  -18 -29 -8  -11 -13 -10 -7  -6  7   1   -5  -11 43  -8  -6  -11 -16 -12 -16 -14 -3  -15 -12 -12 -11 -10 -13 -13 -18 -2  1   -3  0   -13
-34 23  -8  -12 -28 -19 -15 -10 39  -20 -21 -18 -15 -23 4   3   -31 10  -18 -20 -9  -31 21  4   17  20  2   21  11  -23 16  12  32  14  -11 -1  42  39  28  48  26  26  21  -22 -10 0   -5  -2  13  22  10  39  -19 -8  1   -32 -22 33  -16 -12 -3  -21 28  -21 13  -38 4   -34 1   -29 11  -10 -6  -11 22  -4  4   21  -5  5   -7  -6  15  -26 -19 11  7   -47 -24 26  -3  -4  36  26  8   36  47  17  3   44  2   -19 -23 1   -17 -31 0   14  -5  -2  -5  -7  -21 -1  -18 -3  -12 9   -5  -12
-11 0   -8  -10 -27 -8  -11 0   -14 -17 -31 -12 -16 -18 -4  -20 -35 17  -15 -28 -13 -25 -3  11  27  31  38  34  50  -27 22  60  37  40  28  53  34  51  26  16  37  26  10  -24 -13 -11 -24 -9  -8  12  32  7   4   -10 -4  -21 -13 4   -18 -25 -22 -10 4   -20 29  -16 -5  -26 6   -30 13  -5  -9  -14 4   -20 -14 -5  -28 15  -1  -10 26  -11 -31 -2  14  -38 -26 12  18  37  -3  -7  -5  13  17  47  7   5   16  -24 -25 24  -24 -25 1   23  11  26  -13 -15 -13 -14 -11 -1  -10 13  -16 -10
15  23  50  21  25  40  33  39  -14 -5  -16 7   43  43  56  -20 -20 -5  -16 -14 -1  -20 37  37  -17 -15 -6  -16 -18 -15 -6  -14 21  -13 -6  -7  10  7   0   1   1   41  14  -6  -5  17  -15 16  11  -15 11  57  -20 10  -13 -21 -16 8   -18 -17 -18 38  83  10  31  -21 -6  -24 -6  -21 -8  -2  -16 7   22  -11 -7  41  -6  -14 -11 -17 -20 -26 -13 -13 -10 -27 -17 4   -7  -13 4   -14 -18 16  10  -17 39  3   -16 -14 -15 -1  -16 -17 -8  -6  -16 -19 -12 2   -13 20  -16 -13 -3  -14 -15 -15
22  6   19  8   -5  38  -14 -8  21  -31 -31 -18 -5  2   -13 -29 -26 16  -20 -25 -9  -26 -8  11  23  26  17  26  18  60  12  50  11  25  86  42  30  17  48  41  22  20  7   -13 -20 -18 -23 -23 -16 -17 36  10  29  0   -3  -19 -20 -8  -27 -27 -27 -11 29  -20 -12 19  -8  8   9   5   -3  -15 -10 -20 -12 -21 -8  -7  -22 -7  -23 -22 -22 -13 -32 -28 25  -18 -28 40  0   -2  48  18  -7  0   -2  18  -13 18  2   -17 4   1   -18 -22 8   33  -7  9   -15 -22 -25 -17 -21 6   -6  14  -12 -22
16  -19 8   -8  -16 15  -17 -16 43  10  20  28  -1  5   -11 14  41  -9  9   -3  -7  1   -10 -11 -3  -5  -6  -13 -13 -13 -13 -15 -10 -13 -10 -15 -12 -13 -11 -12 2   -15 -9  -12 -11 -16 -16 -10 -9  -13 -3  -6  7   -7  11  64  -8  -8  -4  -12 -10 -14 -6  -15 -8  40  -7  46  14  33  -8  -12 -2  -10 -4  5   -1  -9  7   17  13  31  -11 34  52  3   -7  19  -16 -7  -4  -8  6   -7  -2  15  -13 -8  -4  -11 18  8   -12 0   1   26  4   -15 -8  -13 -5  -6  2   -6  -9  15  2   9   28  -4
-30 23  12  10  -15 1   13  23  33  10  -7  -5  6   -3  55  14  -16 -1  9   22  1   -14 40  1   -6  7   -2  -11 -12 -15 -11 -23 -8  -26 -18 -29 1   7   -6  1   3   15  15  2   -17 -16 -10 -20 -15 35  21  22  -23 8   -3  -29 -19 27  0   -4  16  -9  -7  -11 -5  -38 0   -35 -1  -27 27  15  18  39  30  14  16  43  8   -2  -2  -15 12  -34 15  24  -17 -44 -24 -1  -11 -8  2   16  43  6   25  2   15  20  -14 -21 -17 2   -22 -21 8   -17 -19 1   -17 -2  -18 -9  7   -4  5   17  16  -13
-25 -19 -31 -24 -41 -39 -22 -30 10  -29 -21 -22 -15 9   -21 1   -23 -3  -17 -22 -20 -17 -19 -2  45  34  -1  55  54  -18 52  62  34  57  10  46  48  45  41  65  25  -26 -5  -22 -19 -4  -19 -13 3   -23 -17 -12 65  -19 4   11  -20 16  -21 -17 -22 -23 7   -23 -18 37  -4  34  9   46  -6  -16 -14 -16 -20 -15 -19 -22 -19 -7  -19 6   -17 12  -24 -21 15  -35 -22 36  27  42  21  -2  -12 13  -4  43  -15 3   56  -10 -13 -6  -3  -10 6   43  12  35  -14 -16 -18 -14 -18 9   -14 -3  -4  -27
-34 -25 -37 -30 -31 -43 -34 -31 -21 15  -2  3   -4  -23 -4  19  15  6   25  40  -15 3   -20 -14 -3  -1  8   0   -5  29  -15 -18 -19 -10 -12 -18 -19 -13 -12 -18 -14 -7  -14 13  -24 -20 -16 -21 -16 12  -12 -3  -21 -24 -10 -3  24  -2  37  38  43  38  -18 58  28  -26 -15 -22 -2  -23 8   25  20  42  -10 17  9   -14 4   -10 13  7   -1  1   20  15  -8  13  3   -10 11  4   -13 11  15  -9  8   -6  -1  3   -6  -18 32  8   -19 -11 2   0   6   18  34  36  30  28  39  -2  15  -6  25  11

这是我正在运行的 spss 脚本:
FILE HANDLE X /NAME='\spsswin\auto\matrix.nrm' LRECL=155.
DATA LIST FILE=X /VAR1 TO VAR120 1-155.
DO REPEAT XTEMP=VAR1 TO VAR120.
COMPUTE XTEMP=XTEMP+200.
END REPEAT.
LIST.
CORRELATIONS VARIABLES=VAR001 TO VAR120
/PRINT=TWOTAIL NOSIG.
FACTOR VARIABLES=VAR001 TO VAR120
   /CRITERIA=FACTORS(5),ITERATE(200)
   /EXTRACTION=PC
   /ROTATION=VARIMAX.

这是我能够重现的 SPSS 输出 - 未旋转的组件矩阵分数:
Component Matrixa
    Component
    1   2   3   4   5
var001  .075    -.751   -.232   .261    -.427
var002  .217    -.839   .358    .009    .154
var003  -.059   -.881   .253    .211    -.199
var004  .044    -.867   .119    .095    -.292
var005  -.193   -.855   -.147   .002    -.208
var006  -.025   -.831   .125    .370    -.242
var007  .000    -.946   .102    -.100   .023
var008  -.036   -.930   .204    -.054   -.064
var009  .295    -.002   .034    .458    .478
var010  -.875   -.126   .078    .131    .006
var011  -.498   -.514   -.381   -.094   .249
var012  -.762   -.136   -.113   .451    -.106
var013  -.320   -.604   .150    -.043   -.063
var014  .165    -.610   -.305   -.003   .074
var015  -.222   -.420   .727    .143    .086
var016  -.540   .542    -.174   .052    .380
var017  -.791   .019    -.413   .331    -.061
var018  .267    .739    .255    -.240   -.022
var019  -.848   .440    -.034   -.030   .108
var020  -.834   .463    .086    -.176   .063
var021  -.308   -.818   -.050   .070    -.003
var022  -.767   -.226   -.276   .055    .002
var023  .084    -.714   .500    -.081   .404
var024  .428    -.493   .274    -.388   .146
var025  .825    .487    -.043   -.057   .037
var026  .833    .316    -.006   -.061   .195
var027  .291    .651    .290    .175    -.328
var028  .788    .531    -.023   -.135   .036
var029  .817    .465    -.080   -.079   .039
var030  -.410   .433    .098    -.235   -.475
var031  .795    .286    .006    .067    -.122
var032  .919    .261    -.080   -.111   -.088
var033  .827    -.013   .103    -.153   -.119
var034  .895    .334    -.171   -.116   -.042
var035  .614    -.033   -.076   -.335   -.361
var036  .866    .101    -.191   -.254   -.173
var037  .905    .161    .192    -.043   -.071
var038  .882    .240    .231    .034    .015
var039  .923    .268    .074    -.043   -.002
var040  .905    .262    .072    -.060   .099
var041  .916    .195    .156    .062    -.017
var042  .146    -.560   .594    -.176   -.276
var043  .637    -.350   .459    -.104   .046
var044  -.904   -.024   -.072   -.238   .059
var045  -.193   -.744   -.307   -.241   .135
var046  .145    -.811   -.142   -.393   .085
var047  -.215   -.762   -.302   -.238   .129
var048  .034    -.796   -.219   -.290   .162
var049  .140    -.666   -.206   -.435   .297
var050  -.279   .365    .666    .221    .104
var051  .334    -.252   .551    .353    -.239
var052  .132    -.229   .824    .213    -.140
var053  .764    .158    -.441   -.015   .001
var054  .004    -.811   .034    .177    -.178
var055  .386    -.114   -.386   -.102   -.025
var056  -.296   .250    -.715   .405    .078
var057  -.593   .528    -.200   .047    .104
var058  .440    .085    .374    -.052   .487
var059  -.737   .634    .033    -.142   -.018
var060  -.731   .610    .019    -.226   .041
var061  -.784   .526    .096    -.134   .139
var062  -.574   .181    .365    -.043   -.534
var063  .470    -.350   .350    -.139   -.185
var064  -.670   .362    .250    -.155   -.414
var065  -.031   .224    .580    .201    -.410
var066  .329    -.042   -.690   .286    -.012
var067  .356    -.369   -.116   -.123   .054
var068  .181    -.135   -.769   .314    .087
var069  .547    .471    -.221   .397    .083
var070  .280    -.107   -.783   .222    .108
var071  -.171   .575    .528    -.185   .298
var072  -.655   .613    .208    -.309   .040
var073  -.644   .690    .121    -.081   .141
var074  -.679   .364    .314    -.272   .126
var075  -.052   -.613   .612    .132    .360
var076  -.857   -.006   .186    .063    .206
var077  -.664   -.153   .285    .072    .459
var078  -.088   -.502   .712    .085    .320
var079  -.801   -.221   .105    .083    .179
var080  .196    .054    -.089   .622    .132
var081  -.629   .295    .047    .289    -.041
var082  -.381   .659    -.286   .372    .032
var083  .038    .506    .046    .263    .417
var084  -.173   .587    -.562   .309    .033
var085  -.758   .115    -.156   .443    -.006
var086  -.599   .362    .238    .204    .525
var087  .661    .594    -.192   -.059   -.064
var088  -.683   -.212   -.414   .213    -.338
var089  -.671   -.269   -.096   -.105   .008
var090  .903    .305    .039    -.018   .042
var091  .492    .640    -.112   -.104   -.213
var092  .618    .559    -.039   .038    -.013
var093  .746    .029    -.005   -.052   .122
var094  -.131   .536    .369    -.013   .067
var095  -.514   .310    .477    -.063   .404
var096  .764    .039    .272    .287    .129
var097  .327    .430    .703    .099    .035
var098  .805    .397    .091    -.025   .108
var099  -.050   -.504   .601    .224    -.056
var100  .422    .386    .446    .080    .181
var101  .707    .315    -.351   .281    .150
var102  -.017   -.353   -.518   -.095   .112
var103  -.642   .527    -.044   -.101   -.224
var104  .243    .633    .185    .334    -.218
var105  .110    -.438   -.606   -.411   .254
var106  -.057   -.221   -.765   -.232   .176
var107  -.150   .692    .225    .171    -.086
var108  .815    .467    -.019   -.218   -.085
var109  .264    .293    -.374   -.615   .166
var110  .435    .752    -.017   -.262   .026
var111  -.622   .507    -.122   -.394   -.101
var112  -.764   .406    .002    -.212   -.055
var113  -.750   .259    -.285   -.185   -.239
var114  -.643   .267    .136    -.346   -.269
var115  -.719   .591    .065    -.301   -.039
var116  .458    .074    -.525   .496    -.043
var117  -.873   .244    .110    -.001   -.120
var118  .600    .244    .180    .349    .086
var119  -.479   .446    -.127   .276    .106
var120  -.690   .387    -.146   -.009   -.128
Extraction Method: Principal Component Analysis.
a 5 components extracted.

这是我用来重现这些值的 R 代码:
pfa.eigen <- eigen(cor(my.data))
pfa.eigen$values
factors <- 5
pfa.eigen$vectors[ ,1:factors] %*% diag(
    sqrt(pfa.eigen$values[1:factors]), factors, factors)

以下是我需要重现的来自 SPSS 的“旋转”分量矩阵分数:
Rotated Component Matrixa
    Component
    1   2   3   4   5
var001  -.202   -.636   -.192   .208    -.590
var002  -.039   -.907   -.144   .091    .223
var003  -.347   -.880   .001    .099    -.149
var004  -.223   -.850   -.110   .025    -.280
var005  -.428   -.654   -.354   -.012   -.311
var006  -.338   -.804   .013    .258    -.275
var007  -.253   -.852   -.355   -.026   .007
var008  -.287   -.883   -.222   -.056   -.019
var009  .165    -.041   .025    .629    .318
var010  -.878   .086    .106    -.106   .064
var011  -.608   -.120   -.585   .033    .021
var012  -.847   .102    .140    .205    -.191
var013  -.460   -.506   -.111   -.127   -.002
var014  -.033   -.433   -.498   .194    -.153
var015  -.344   -.596   .392    -.056   .390
var016  -.368   .729    -.002   .054    .302
var017  -.812   .377    -.079   .178    -.268
var018  .523    .466    .366    -.277   .199
var019  -.658   .631    .141    -.217   .169
var020  -.602   .596    .189    -.389   .219
var021  -.542   -.606   -.313   .065    -.092
var022  -.799   .119    -.223   -.045   -.120
var023  -.109   -.787   -.121   .025    .538
var024  .342    -.620   -.246   -.208   .261
var025  .921    .228    .081    .134    .010
var026  .877    .084    -.023   .195    .147
var027  .438    .316    .651    -.029   -.122
var028  .916    .269    .081    .050    .040
var029  .911    .227    .036    .126    -.004
var030  -.192   .384    .343    -.534   -.244
var031  .812    .017    .152    .179    -.136
var032  .955    .008    -.016   .093    -.129
var033  .804    -.282   .004    -.002   -.073
var034  .953    .121    -.070   .118    -.127
var035  .641    -.197   -.107   -.249   -.322
var036  .890    -.078   -.185   -.031   -.241
var037  .905    -.186   .162    .091    .003
var038  .889    -.119   .223    .166    .089
var039  .949    -.041   .093    .143    .009
var040  .932    -.027   .045    .162    .096
var041  .901    -.141   .174    .211    .014
var042  .031    -.798   .222    -.326   .042
var043  .524    -.649   .092    -.011   .219
var044  -.801   .260    -.139   -.379   .110
var045  -.355   -.439   -.660   -.063   -.051
var046  -.022   -.656   -.633   -.167   -.009
var047  -.381   -.452   -.659   -.067   -.054
var048  -.146   -.575   -.661   -.059   .007
var049  .018    -.474   -.720   -.122   .157
var050  -.186   .122    .690    -.044   .432
var051  .180    -.573   .519    .171    -.028
var052  .033    -.596   .635    -.034   .232
var053  .749    .118    -.298   .274    -.252
var054  -.266   -.743   -.154   .144    -.234
var055  .339    -.042   -.375   .107    -.231
var056  -.310   .586    -.249   .471    -.327
var057  -.415   .705    .079    -.055   .060
var058  .444    -.130   .069    .134    .586
var059  -.469   .728    .259    -.365   .127
var060  -.454   .721    .181    -.409   .181
var061  -.548   .641    .208    -.320   .282
var062  -.451   .087    .546    -.480   -.205
var063  .379    -.590   .096    -.137   -.013
var064  -.469   .333    .447    -.540   -.121
var065  .016    -.098   .747    -.155   -.066
var066  .216    .152    -.397   .504    -.432
var067  .247    -.353   -.321   .060    -.045
var068  .040    .156    -.508   .558    -.393
var069  .553    .354    .142    .522    -.106
var070  .159    .166    -.560   .511    -.369
var071  .055    .368    .420    -.277   .608
var072  -.360   .628    .277    -.512   .287
var073  -.381   .735    .306    -.261   .293
var074  -.463   .387    .238    -.462   .386
var075  -.249   -.723   .115    .121    .537
var076  -.814   .169    .123    -.126   .307
var077  -.681   -.015   .033    .007    .544
var078  -.236   -.663   .227    .022    .574
var079  -.829   -.001   -.003   -.065   .218
var080  .058    .032    .166    .647    -.052
var081  -.559   .387    .324    .045    .002
var082  -.251   .780    .227    .260    -.103
var083  .118    .456    .187    .333    .368
var084  -.071   .779    -.037   .335    -.249
var085  -.772   .349    .168    .227    -.106
var086  -.502   .436    .233    .131    .592
var087  .798    .411    .064    .087    -.129
var088  -.747   .116    -.123   .020    -.506
var089  -.683   -.012   -.189   -.201   -.005
var090  .934    .016    .078    .182    .029
var091  .669    .443    .185    -.071   -.192
var092  .730    .333    .184    .141    -.027
var093  .712    -.151   -.100   .178    .065
var094  .045    .354    .452    -.159   .299
var095  -.372   .261    .309    -.181   .648
var096  .664    -.269   .245    .402    .150
var097  .426    -.003   .685    -.043   .382
var098  .871    .109    .129    .155    .126
var099  -.226   -.683   .348    .043    .175
var100  .495    .060    .415    .088    .370
var101  .677    .243    -.097   .532    -.118
var102  -.113   -.069   -.592   .120    -.180
var103  -.418   .614    .253    -.354   -.107
var104  .348    .367    .599    .165    -.110
var105  .043    -.112   -.885   -.038   -.064
var106  -.090   .170    -.797   .071    -.212
var107  .033    .527    .549    -.036   .080
var108  .944    .191    .068    -.055   -.052
var109  .452    .376    -.493   -.329   .069
var110  .680    .552    .141    -.167   .097
var111  -.347   .648    .015    -.533   .006
var112  -.545   .548    .132    -.419   .074
var113  -.584   .510    -.050   -.373   -.242
var114  -.436   .316    .189    -.606   -.033
var115  -.429   .674    .202    -.510   .149
var116  .328    .140    -.137   .651    -.411
var117  -.736   .378    .266    -.303   .030
var118  .557    -.019   .312    .408    .085
var119  -.381   .569    .192    .157    .044
var120  -.528   .558    .131    -.213   -.103
Extraction Method: Principal Component Analysis.
 Rotation Method: Varimax with Kaiser Normalization.
a Rotation converged in 20 iterations.

最佳答案

如果在 principal() 包中使用 psych,则可以指定参数:
rotate"none", "varimax", "quatimax", "promax", "oblimin", "simplimax", and "cluster" are possible rotations/transformations of the solution.
引用:Psych on Cran

这可能对你有帮助。为时已晚,但以供将来引用:
data (df)> install.packages ("psych")> library ("psych")> rotatedmatrix <- principal(df, nfactors = 4, rotate = "varimax", scores = TRUE)
要获得因子载荷:
> loadings <- as.data.frame(unclass(rotatedmatrix$loadings))
要将因子载荷导出到文本文件:
> capture.output(print(rotatedmatrix), file=""filename.txt")

关于用 R 再现 SPSS 因子分析,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/18139292/

10-12 02:16