我想在稀疏矩阵中找到n个零元素。我写下面的代码:

counter = 0
while counter < n:
    r = randint(0, W.shape[0]-1)
    c = randint(0, W.shape[1]-1)
    if W[r,c] == 0:
        result.append([r,c])
        counter += 1


不幸的是,它非常慢。我想要更高效的东西。有什么方法可以从scipy稀疏矩阵快速访问零元素吗?

最佳答案

import numpy as np
import scipy.sparse as sparse
import random
randint = random.randint

def orig(W, n):
    result = list()
    while len(result) < n:
        r = randint(0, W.shape[0]-1)
        c = randint(0, W.shape[1]-1)
        if W[r,c] == 0:
            result.append((r,c))
    return result

def alt(W, n):
    nrows, ncols = W.shape
    density = n / (nrows*ncols - W.count_nonzero())
    W = W.copy()
    W.data[:] = 1
    W2 = sparse.csr_matrix((nrows, ncols))
    while W2.count_nonzero() < n:
        W2 += sparse.random(nrows, ncols, density=density, format='csr')
        # remove nonzero values from W2 where W is 1
        W2 -= W2.multiply(W)
    W2 = W2.tocoo()
    r = W2.row[:n]
    c = W2.col[:n]
    result = list(zip(r, c))
    return result

def alt_with_dupes(W, n):
    nrows, ncols = W.shape
    density = n / (nrows*ncols - W.count_nonzero())
    W = W.copy()
    W.data[:] = 1
    W2 = sparse.csr_matrix((nrows, ncols))
    while W2.data.sum() < n:
        tmp = sparse.random(nrows, ncols, density=density, format='csr')
        tmp.data[:] = 1
        W2 += tmp
        # remove nonzero values from W2 where W is 1
        W2 -= W2.multiply(W)
    W2 = W2.tocoo()
    num_repeats = W2.data.astype('int')
    r = np.repeat(W2.row, num_repeats)
    c = np.repeat(W2.col, num_repeats)
    idx = np.random.choice(len(r), n)
    result = list(zip(r[idx], c[idx]))
    return result




这是一个基准测试:

W = sparse.random(1000, 50000, density=0.02, format='csr')
n = int((np.multiply(*W.shape) - W.nnz)*0.01)

In [194]: %timeit alt(W, n)
809 ms ± 261 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [195]: %timeit orig(W, n)
11.2 s ± 121 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [223]: %timeit alt_with_dupes(W, n)
986 ms ± 290 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)




请注意,alt返回一个没有重复的列表。 origalt_with_dupes都可能返回重复项。

关于python - 在稀疏csr_matrix中找到n个随机零元素,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/55198505/

10-13 05:28