我一直在尝试实现一个nxn图像的高斯模糊函数,其高斯核的特定半径为rs=((int)2.75*sigma+0.5)。
for (x=0;x<n;x++){
for (y=0;y<n;y++){
sum=0.0,wsum=0.0;
//Position correction at the edges
if(x-rs<0){
ix=0;
}
else ix=rs;
if(y-rs<0){
iy=0;
}
else iy=rs;
if (x+rs>n-1){
jx=n-1-x;
}
else jx=rs;
if (y+rs>n-1){
jy=n-1-y;
}
else jy=rs;
//Kernel mean value correction at the edges
if ( x-rs < 0 ){
meanx=x+((int)rs/2);
}
else meanx=x;
if(y-rs<0){
meany=y+((int)rs/2);
}
else meany=y;
if (x+rs>n-1){
meanx=x-((int)rs/2);
}
else meanx=x;
if (y+rs>n-1){
meany=y-((int)rs/2);
}
else meany=y;
for (i=x-ix;i<=x+jx;i++){
for (j=y-iy;j<=y+jy;j++){
weight=1/(2*M_PI*sigma*sigma)*exp(-((meanx-i)*(meanx-i)+(meany-j)*(meany-j))/(2*sigma*sigma));
sum+=pic1.intenzity[i][j]*weight;
wsum+=weight;
}
}
pic2->intenzity[x][y]=((int)sum/wsum+0.5);
fprintf(fw,"%d\n",pic2->intenzity[x][y]);
}
当我不使用边缘的平均值校正时,结果如下所示:
without mean value correction
当我尝试移动内核的平均值时,它也在图像的下边缘和右边缘创建了一个不连续:
with shifting the mean value to rs/2
我必须修正边缘位置,因为总数会溢出。现在看来,高斯卷积在x和y都位于上边缘和左边缘的rs位置时,由于某种原因突然跳跃。我想使它的行为与在图像的“内部”中的行为相同,或者可能使强度随着位置接近边缘而衰减到0。
我可以用rs放大图像,但这会引起边缘位置的问题。
感谢您的任何有见地的帮助:)
最佳答案
让我们来看一个典型的过滤器内核,它被应用到一个图像中,使用伪代码。允许使用变量
# source[y][x] Old image (read-only)
# target[y][x] New image (write-only)
# image_height Image height (y = 0 .. image_height-1)
# image_width Image width (x = 0 .. image_width-1)
# filter[y][x] Filter (weights) to be applied
# filter_height Filter height (y = 0 .. filter_height-1)
# filter_width Filter width (x = 0 .. filter_width-1)
# filter_y Target pixel y coordinate in filter (filter_height/2)
# filter_x Target pixel x coordinate in filter (filter_width/2)
其中
filter_y = floor(filter_width / 2)
和filter_x = floor(filter_height / 2)
如果过滤器位于目标像素的中心(即对称)。伪代码大概是For base_y = 0 to image_height - 1:
# y range relative to base_y ...
min_y = -filter_y
max_y = filter_height - 1 - filter_y
# ... must not exceed the image boundaries.
If min_y + base_y < 0:
min_y = -base_y
End If
If max_y + base_y < 0:
max_y = -base_y
End If
If min_y + base_y >= image_height:
min_y = image_height - 1 - base_y
End If
If max_y + base_y >= image_height:
max_y = image_height - 1 - base_y
End If
For base_x = 0 to image_width - 1:
# x range relative to base_x ...
min_x = -filter_x
max_x = filter_width - 1 - filter_x
# ... must not exceed the image boundaries.
If min_x + base_x < 0:
min_x = -base_x
End If
If max_x + base_x < 0:
max_x = -base_x
End If
If min_x + base_x >= image_width:
min_x = image_width - 1 - base_x
End If
If max_x + base_x >= image_height:
max_x = image_width - 1 - base_x
End If
ValueSum = 0
WeightSum = 0
For y = min_y to max_y:
For x = min_x to max_x:
Value = source[y + base_y][x + base_x]
Weight = filter[y + filter_y][x + filter_x]
ValueSum = ValueSum + Value * Weight
WeightSum = WeightSum + Weight
End For
End For
If WeightSum != 0:
target[base_y][base_x] = ValueSum / WeightSum
End If
End For
End For
在最里面的循环中,
[base_y][base_x]
指的是目标像素,我们正在计算的像素;[y+base_y][x+base_x]
指的是源像素,其权重为[y+filter_y][x+filter_x]
。x
和y
是相对值,分别从-filter_x
和-filter_y
到filter_width-1-filter_x
和filter_height-1-filter_y
。只要
ValueSum
和WeightSum
有足够的范围,无论图像和过滤数据是整数还是浮点,都可以使用相同的代码。最棘手的是如何正确计算
min_y
、max_y
、min_x
和max_x
,这也是OP看到的造成艺术品的部分。要进行调试,请删除最里面的两个循环,然后打印如下内容
printf("y = %d, ymin = %d (%d), ymax = %d (%d)\n",
base_y, min_y, min_y + base_y, max_y, max_y + base_y);
在外环内(无需每次打印),和
printf("x = %d, xmin = %d (%d), xmax = %d (%d)\n",
base_x, min_x, min_x + base_x, max_x, max_x + base_x);
一旦进入最里面的循环(不需要为每个
base_x
再次打印),例如base_y
。这将输出if (y == 0) printf("...");
行,并允许您验证定义的范围是否正确。在OP的情况下,在图像边缘附近的范围是不正确的;即,它们的一些
image_width + image_height
子句对应于上述伪代码计算/分配不正确的if
、min_x
、max_x
和min_y
值。关于c - 高斯模糊在图像边缘的“不连续性”,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/40423128/