每一个CPAer心中都有一个公式: P = D/(r-g)
(P为某一时点股票的内在价值;D:预期股利,r: 股权权益资本成本,g:股利增长率
即D = D*(1+g) )
因此根据公式预计下一期(时点)股票内在价值 P = D/(r-g) = D*(1+g)/(r-g)
=  P * (1+g);
通用公式为:P= P*(1+g)。
乍一看股权权益资本成本为r, 为什么不是P = P * (1+r) 而是P = P * (1+g) ?
其实某一时点股票内在价值P实际是剔除已发放股利的价值的, 也就是说0点的价值P 是由两部分构成的,下一期股利D的现值D/(1+r)与下一期股票内在价值P的现值P/(1+r)。
如果不直接走公式的话即: P = D/(1+r) + P/(1+r)  = D/(r-g)
或者 P = P * (1+r) - D
        = D/(r-g) * (1+r)  - D * (r-g)/(r-g)
        = D* (1+r)/(r-g) - D * (r-g)/(r-g)
        = D *[(1+r)-(r-g)] / (r-g)
        = D*(1+g)/(r-g)
        = P * (1+g)
是由于周期性股利除权引起的。

又有部分同学可能会困惑于为什么平息债券却是(1+r)的关系呢,但是该结论只局限于到期一次还本付息的债券符合此种关系,固定期限周期付息则不满足。
如平价债券(固定期限周期付息)价值则是周期波动型维持票面价值(每次付息后回到票面价值),溢价发行债券波动型渐渐随着付息趋向票面价值(一直大于票面价值),折价发行同理,只是过程中未付息前价值可能会超过票面价值。
  //的

11-10 02:47