我只是浏览了Stack Overflow和其他论坛,但找不到对我的问题有用的任何东西。但这似乎与this question有关。
根据Tensorflow的MNIST教程,我目前保存了一个经过训练的Tensorflow模型(128个输入和11个输出)。
似乎成功了,现在我在此文件夹中有了一个模型,其中包含3个文件(.meta,.ckpt.data和.index)。但是,我想还原它并将其用于预测:
#encoding[0] => numpy ndarray (128, ) # anyway a list with only one entry
#unknowndata = np.array(encoding[0])[None]
unknowndata = np.expand_dims(encoding[0], axis=0)
print(unknowndata.shape) # Output (1, 128)
# Restore pre-trained tf model
with tf.Session() as sess:
#saver.restore(sess, "models/model_1.ckpt")
saver = tf.train.import_meta_graph('models/model_1.ckpt.meta')
saver.restore(sess,tf.train.latest_checkpoint('models/./'))
y = tf.get_collection('final tensor') # tf.nn.softmax(tf.matmul(y2, W3) + b3)
X = tf.get_collection('input') # tf.placeholder(tf.float32, [None, 128])
# W1 = tf.get_collection('vars')[0]
# b1 = tf.get_collection('vars')[1]
# W2 = tf.get_collection('vars')[2]
# b2 = tf.get_collection('vars')[3]
# W3 = tf.get_collection('vars')[4]
# b3 = tf.get_collection('vars')[5]
# y1 = tf.nn.relu(tf.matmul(X, W1) + b1)
# y2 = tf.nn.relu(tf.matmul(y1, W2) + b2)
# yLog = tf.matmul(y2, W3) + b3
# y = tf.nn.softmax(yLog)
prediction = tf.argmax(y, 1)
print(sess.run(prediction, feed_dict={i: d for i,d in zip(X, unknowndata.T)}))
# also had sess.run(prediction, feed_dict={X: unknowndata.T}) and also not transposed, still errors
# Output: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # one should be 1 obviously with a specific percentage
在那里我只遇到问题...
ValueError:无法为形状为((?,128)'的张量'x:0'提供形状(1,)的值
完全我打印出“ unknowndata”的形状,它与(1,128)匹配。
我也尝试过
sess.run(prediction, feed_dict={X: unknownData})) # with transposed etc. but nothing worked for me there I got the other error
TypeError:无法散列的类型:“列表”
我只想对这个美丽的Tensorflow训练模型进行一些预测。
最佳答案
prediction
张量是通过y
上的argmax获得的。您可以在执行prediction
时将y
添加到输出Feed中,而不仅仅是返回sess.run
。
output_feed = [prediction, y]
preds, probs = sess.run(output_feed, print(sess.run(prediction, feed_dict={i: d for i,d in zip(X, unknowndata.T)}))
preds
将具有模型的预测,而probs
将具有概率分数。关于python - Tensorflow无法提供形状为((?,128)''的Tensor'x:0'的shape(1,)值,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/46496213/