我是强化学习的初学者,正在尝试实施策略梯度方法以使用Tensorflow解决Open AI Gym CartPole任务。但是,我的代码似乎运行得非常慢。第一集以可接受的速度运行,但是从第二集开始非常慢。为什么会这样,我该如何解决这个问题?
我的代码:
import tensorflow as tf
import numpy as np
import gym
env = gym.make('CartPole-v0')
class Policy:
def __init__(self):
self.input_layer_fake = tf.placeholder(tf.float32, [4,1])
self.input_layer = tf.reshape(self.input_layer_fake, [1,4])
self.dense1 = tf.layers.dense(inputs = self.input_layer, units = 4,
activation = tf.nn.relu)
self.logits = tf.layers.dense(inputs = self.dense1, units = 2,
activation = tf.nn.relu)
def predict(self, inputObservation):
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
x = tf.reshape(inputObservation, [4,1]).eval()
return (sess.run(self.logits, feed_dict = {self.input_layer_fake: x}))
def train(self, features_array, labels_array):
for i in range(np.shape(features_array)[0]):
print("train")
print(i)
sess1 = tf.InteractiveSession()
tf.global_variables_initializer().run()
self.cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = labels_array[i], logits = self.logits))
self.train_step = tf.train.GradientDescentOptimizer(0.5).minimize(self.cross_entropy)
y = tf.reshape(features_array[i], [4,1]).eval()
sess1.run(self.train_step, feed_dict={self.input_layer_fake:y})
agent = Policy()
train_array = []
features_array = []
labels_array = []
main_sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for i_episode in range(100):
observation = env.reset()
for t in range(200):
prevObservation = observation
env.render()
if np.random.uniform(0,1) < 0.2:
action = env.action_space.sample()
else:
action = np.argmax(agent.predict((prevObservation)))
observation, reward, done, info = env.step(action)
add_in = np.random.uniform(0,1)
if add_in < 0.5:
features_array.append(prevObservation)
sarPreprocessed = agent.predict(prevObservation)
sarPreprocessed[0][action] = reward
labels_array.append(sarPreprocessed)
if done:
break
agent.train(features_array, labels_array)
features_array = []
labels_array = []
任何帮助是极大的赞赏。
最佳答案
自从我看过这种尝试实现Policy Gradients以来已经有一段时间了,但是据我所记得,问题是我在train函数中使用了循环。
当我遍历features_array
中的每个元素时,虽然数组的长度不断增长(features_array
从未设置回[]
),但程序速度变慢。取而代之的是,我应该以“批处理”的方式进行培训,同时定期清除features_array
。
我在这里实现了更简单的香草政策梯度算法版本:
https://github.com/Ashboy64/rl-reimplementations/blob/master/Reimplementations/Vanilla-Policy-Gradient/vanilla_pg.py
可以在此处找到称为PPO(近端策略优化)的性能更好的改进算法(仍基于策略梯度)的实现:
https://github.com/Ashboy64/rl-reimplementations/tree/master/Reimplementations/PPO
关于python - 开放式AI健身房Cartpole的政策梯度方法,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/46597809/