Scikit-learn的sklearn.metrics.pairwise.cosine_similarity和sklearn.metrics.pairwise.pairwise_distances(.. metric =“cosine”)有什么区别?

from sklearn.feature_extraction.text import TfidfVectorizer

documents = (
    "Macbook Pro 15' Silver Gray with Nvidia GPU",
    "Macbook GPU"
)

tfidf_vectorizer = TfidfVectorizer()
tfidf_matrix = tfidf_vectorizer.fit_transform(documents)

from sklearn.metrics.pairwise import cosine_similarity
print(cosine_similarity(tfidf_matrix[0:1], tfidf_matrix)[0,1])

0.37997836
from sklearn.metrics.pairwise import pairwise_distances
print(pairwise_distances(tfidf_matrix[0:1], tfidf_matrix, metric='cosine')[0,1])

0.62002164

为什么这些不同?

最佳答案

从源代码documentation:

Cosine distance is defined as 1.0 minus the cosine similarity.

因此,您的结果很有道理。

关于python - scikit cosine_similarity与pairwise_distances,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/35281691/

10-13 00:04