我正在LightGBM中使用LGBMClassifer构建二进制分类器模型,如下所示:
# LightGBM model
clf = LGBMClassifier(
nthread=4,
n_estimators=10000,
learning_rate=0.005,
num_leaves= 45,
colsample_bytree= 0.8,
subsample= 0.4,
subsample_freq=1,
max_depth= 20,
reg_alpha= 0.5,
reg_lambda=0.5,
min_split_gain=0.04,
min_child_weight=.05
random_state=0,
silent=-1,
verbose=-1)
接下来,将我的模型拟合训练数据
clf.fit(train_x, train_y, eval_set=[(train_x, train_y), (valid_x, valid_y)],
eval_metric= 'auc', verbose= 100, early_stopping_rounds= 200)
fold_importance_df = pd.DataFrame()
fold_importance_df["feature"] = feats
fold_importance_df["importance"] = clf.feature_importances_
输出:
feature importance
feature13 1108
feature21 1104
feature11 774
到这里一切都很好,现在我正在研究基于此模型的特征重要性度量。所以,我正在使用
feature_importance_()
函数来获取它(但是默认情况下,它基于split
赋予了我功能重要性)虽然
split
使我了解了拆分中使用了多少个特征,但是我认为gain
可以使我更好地了解特征的重要性。LightGBM增强器类https://lightgbm.readthedocs.io/en/latest/Python-API.html?highlight=importance的Python API提到:
feature_importance(importance_type='split', iteration=-1)
Parameters:importance_type (string, optional (default="split")) –
If “split”, result contains numbers
of times the feature is used in a model. If “gain”, result contains
total gains of splits which use the feature.
Returns: result – Array with feature importances.
Return type: numpy array`
而针对LightGBM
LGBMClassifier()
的Sklearn API没有提及任何Sklearn API LGBM,它对此功能仅具有以下参数:feature_importances_
array of shape = [n_features] – The feature importances (the higher, the more important the feature).
我的问题是如何从
sklearn
版本即基于LGBMClassifier()
的gain
获得功能的重要性? 最佳答案
feature_importance()
是原始LGBM中Booster对象的一种方法。
sklearn API通过API Docs中给出的属性booster_
将底层Booster暴露在训练数据上。
因此,您可以首先访问该增强对象,然后以与原始LGBM相同的方式调用feature_importance()
。
clf.booster_.feature_importance(importance_type='gain')
关于machine-learning - 如何在sklearn中的LightGBM分类器的feature_importances_中将“增益”设置为特征重要性度量:: LGBMClassifier(),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/51118772/