我的神经网络有点麻烦。我已经设置好了,它会生成一个包含5个值的数组; 0
或1
,即[1,1,0,1,0]
。然后使用Node.js控制台记录随机数组,如果我用y
答复,它将以正确的输出将其添加到训练中,反之亦然。响应后,genRan()
运行并创建一个新的随机数组,并将“猜测”保存到var guess
。但是,第一次运行后,它不再给我一个猜测值,而是:[object Object]
。
这是代码:
var brain = require('brain.js');
var net = new brain.NeuralNetwork();
const readline = require('readline');
const r1 = readline.createInterface({
input: process.stdin,
output: process.stdout
});
var ca = 0,
wa = 0;
net.train([
{input: [0,0,0,0,0], output: [0]}
]);
function genRan(){
var a,b,c,d,e;
var array = [];
a = Math.round(Math.random());
b = Math.round(Math.random());
c = Math.round(Math.random());
d = Math.round(Math.random());
e = Math.round(Math.random());
array.push(a,b,c,d,e);
var guess = net.run(array);
ask(array,guess);
}
function ask(a,b){
var array = a,
guess = b;
r1.question((wa+ca) + ") input: " + array + " We think: " + guess + ". Am I correct? (Y/N)", (answer) => {
if(answer == "Y" || answer == "y"){
ca++;
net.train([
{input : array, output : Math.round(guess)}
]);
}else if(answer == "N" || answer == "n"){
wa++;
var roundGuess = Math.round(guess);
var opposite;
switch (roundGuess){
case 1:
opposite = 0;
break;
case 0:
opposite = 1;
break;
default:
opposite = null
}
net.train([
{input : array, output : opposite}
]);
}
console.log("Success percent: " + (100 *ca/(ca+wa)) + "% " + (ca+wa) +" attempts\n\r");
genRan();
})
}
genRan();
第一个问题很好用,并提出以下内容:
0) input: 0,0,0,0,0 We think: 0.07046. Am I correct? (Y/N)
当我回复时,我得到:
Success percent: 100% 1 attempts
1) input 1,1,1,0,1 We think: [object Object]. Am I correct? (Y/N)
由于某种原因,当涉及到“猜测”时,它并没有给我任何价值。有什么想法吗?
最佳答案
它出错的原因是双重的net.run
的输出是一个数组-您可能需要其中的第一项。output
中net.train
的输入是一个数组-您正在为其传递一个不同的值
经过一些更改,您的代码可以按您期望的那样工作:
在整个guess[0]
方法中使用ask
将oposite
变量括在方括号中以使其成为数组
net.train([
{input : array, output : [opposite]}
]);
以下工作代码供您参考(尽管不会在stacksnippet中工作)
var brain = require('brain.js');
var net = new brain.NeuralNetwork();
const readline = require('readline');
const r1 = readline.createInterface({
input: process.stdin,
output: process.stdout
});
var ca = 0,
wa = 0;
net.train([
{input: [0,0,0,0,0], output: [0]}
]);
function genRan(){
var a,b,c,d,e;
var array = [];
a = Math.round(Math.random());
b = Math.round(Math.random());
c = Math.round(Math.random());
d = Math.round(Math.random());
e = Math.round(Math.random());
array.push(a,b,c,d,e);
//console.log(array);
var guess = net.run(array);
ask(array,guess);
}
function ask(a,b){
var array = a,
guess = b;
r1.question((wa+ca) + ") input: " + array + " We think: " + guess[0] + ". Am I correct? (Y/N)", (answer) => {
if(answer == "Y" || answer == "y"){
ca++;
net.train([
{input : array, output : Math.round(guess[0])}
]);
}else if(answer == "N" || answer == "n"){
wa++;
var roundGuess = Math.round(guess[0]);
var opposite;
switch (roundGuess){
case 1:
opposite = 0;
break;
case 0:
opposite = 1;
break;
default:
opposite = null
}
net.train([
{input : array, output : [opposite]}
]);
}
console.log("Success percent: " + (100 *ca/(ca+wa)) + "% " + (ca+wa) +" attempts\n\r");
genRan();
})
}
genRan();
关于javascript - JavaScript中的神经网络,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/49073052/