我正在尝试使用pyspark和tweepy库流式传输tweet,以根据转发和喜欢的次数获得前十名的tweet。

第一步是使用tweepy传输tweet,我在pycharm中完美地传输了tweets,这是代码:

import tweepy
from tweepy import OAuthHandler
from tweepy import Stream
from tweepy.streaming import StreamListener
import socket
import json

consumer_key = 'consumer_key'
consumer_secret = 'secret_key'
access_token = 'token_key'
access_secret = 'access_secret_key'

class TweetsListener(StreamListener):

  def __init__(self, csocket):
  self.client_socket = csocket

  def on_data(self, data):
      try:
      msg = json.loads( data )
      print( msg['text'].encode('utf-8') )
      self.client_socket.send(
      msg['text'].encode('utf-8') )
      return True
      except BaseException as e:
      print("Error on_data: %s" % str(e))
     return True

  def on_error(self, status):
     print(status)
     return True

  def sendData(c_socket):
    auth = OAuthHandler(consumer_key,
   consumer_secret)
   auth.set_access_token(access_token,
    access_secret)

   twitter_stream = Stream(auth,
   TweetsListener(c_socket))
    twitter_stream.filter(track=
    ['iphone'],languages=["en"])

  if __name__ == "__main__":
    s = socket.socket()
    host = "192.168.0.12"
    port = 5555
    s.bind((host, port))

    print("Listening on port: %s" % str(port))

     s.listen(5)
   c, addr = s.accept()

  print( "Received request from: " + str( addr ) )

   sendData( c )


其次,这是我在Jupyter Notebook中运行的pyspark代码。首先是流代码:

from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.sql import SQLContext
from pyspark.sql.functions import desc
from pyspark.sql import HiveContext
sc
ssc = StreamingContext(sc, 10 )

sqlContext = SQLContext(sc)
socket_stream = ssc.socketTextStream("192.168.0.12", 5555)
lines = socket_stream.window( 20 )
from collections import namedtuple

fields = ("tag", "count" )

Tweet = namedtuple( 'Tweet', fields)

(lines.flatMap(lambda text: text.split(" ")).filter(lambda word: word.lower().startswith("#"))
.map( lambda word: ( word.lower(), 1))
.reduceByKey( lambda a, b: a + b)
.map(lambda rec: Tweet(rec[0], rec[1]))
.foreachRDD(lambda rdd: rdd.toDF().sort(desc("count")).limit(10).registerTempTable("tweets") ))

ssc.start()


然后测试并绘制代码:

import time
from IPython import display
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

count = 0
 while count < 10:

    time.sleep( 3 )

    top_10_tweets = sqlContext.sql( 'Select tag, count from tweets' )
    top_10_df = top_10_tweets.toPandas()
    display.clear_output(wait=True) #Clears the output, if a plot exists.
    sns.plt.figure( figsize = ( 10, 8 ) )
    sns.barplot( x="count", y="tag", data=top_10_df)
    sns.plt.show()
    count = count + 1


但是当我到达以count = 0开始直到结束的最后一个单元格时出现此错误:



---------------------------
 Py4JJavaError
     Traceback (most recent call last)
  /usr/local/Cellar/apache-/usr/local/Cellar/apache-
spark/2.4.0/libexec/python/pyspark/sql/utils.py
in deco(*a, **kw)
 62         try:
---> 63             return f(*a, **kw)
    64         except
  py4j.protocol.Py4JJavaError as e:

  /usr/local/Cellar/apache-
  spark/2.4.0/libexec/python/lib/py4j-0.10.7-
  src.zip/py4j/protocol.py in
  get_return_value(answer, gateway_client,
  target_id, name)
   327                     "An error occurred
  while calling {0}{1}{2}.\n".
  --> 328                     format(target_id,
  ".", name), value)
      329             else:

       AnalysisException: 'Table or view not
        found: tweets; line 1 pos 23'


知道如何解决吗?

最佳答案

这不是代码的问题。由于“ registerTempTable”没有创建名为“ tweet”的临时视图,因此会出现此问题。这不是在本地计算机上完成的,但是您有任何虚拟机(Ubuntu可以正常运行),然后将创建临时视图。

关于python - 用tweepy和pyspark流推特,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54975569/

10-16 02:36