我正在尝试执行这段代码,它处理70幅图像并提取定向梯度(hog)特征的直方图。这些被传递到分类器(scikit learn)。
但是,出现了一个错误:
hog_image = hog_image_rescaled.resize((200, 200), Image.ANTIALIAS)
TypeError: an integer is required
我不明白为什么,因为尝试一个单一的图像是正确的。
#Hog Feature
from skimage.feature import hog
from skimage import data, color, exposure
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import os
import glob
import numpy as np
from numpy import array
listagrigie = []
path = 'img/'
for infile in glob.glob( os.path.join(path, '*.jpg') ):
print("current file is: " + infile )
colorato = Image.open(infile)
greyscale = colorato.convert('1')
#hog feature
fd, hog_image = hog(greyscale, orientations=8, pixels_per_cell=(16, 16),
cells_per_block=(1, 1), visualise=True)
plt.figure(figsize=(8, 4))
print(type(fd))
plt.subplot(121).set_axis_off()
plt.imshow(grigiscala, cmap=plt.cm.gray)
plt.title('Input image')
# Rescale histogram for better display
hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02))
print("hog 1 immagine shape")
print(hog_image_rescaled.shape)
hog_image = hog_image_rescaled.resize((200, 200), Image.ANTIALIAS)
listagrigie.append(hog_image)
target.append(i)
print("ARRAY of gray matrices")
print(len(listagrigie))
grigiume = np.dstack(listagrigie)
print(grigiume.shape)
grigiume = np.rollaxis(grigiume, -1)
print(grigiume.shape)
from sklearn import svm, metrics
n_samples = len(listagrigie)
data = grigiume.reshape((n_samples, -1))
# Create a classifier: a support vector classifier
classifier = svm.SVC(gamma=0.001)
# We learn the digits on the first half of the digits
classifier.fit(data[:n_samples / 2], target[:n_samples / 2])
# Now predict the value of the digit on the second half:
expected = target[n_samples / 2:]
predicted = classifier.predict(data[n_samples / 2:])
print("expected")
print("predicted")
最佳答案
您应该将源图像(在您的示例中命名为colorato
)重新缩放为(200, 200)
,然后提取hog特征,然后将fd
向量的列表传递给您的机器学习模型。hog_image
只是为了以用户友好的方式可视化特性描述符。实际特征在fd
变量中返回。