我有两张桌子。一个包括100万条记录,另一种包括2000万条记录。
表格1
值
(1,1)
(2,2)
(3、3)
(4、4)
(5、4)
....
表2
值
(55,11)
(33,22)
(44、66)
(22、11)
(11,33)
....
我需要使用表1中的值乘以表2中的值,获得结果的排名,并获得排名前5位。
他们的结果将是:
表1中的值,表1中每个值的前5个
(1,1),1 * 44 + 1 * 66 = 110
(1,1),1 * 55 + 1 * 11 = 66
(1,1),1 * 33 + 1 * 22 = 55
(1,1),1 * 11 + 1 * 33 = 44
(1,1),1 * 22 + 1 * 11 = 33
.....
我试图在蜂巢中使用交叉联接。但由于表太大,我总是会失败。
最佳答案
首先从表2中选择前5个,然后与第一个表进行交叉联接。这与交叉连接两个表相同,并且在交叉连接后取top5,但是在第一种情况下连接的行数要少得多。具有5行小数据集的交叉联接将转换为map-join,并以与table1全扫描一样快的速度执行。
请看下面的演示。交叉联接已转换为地图联接。注意计划中的"Map Join Operator"
和以下警告:"Warning: Map Join MAPJOIN[19][bigTable=?] in task 'Map 1' is a cross product"
:
hive> set hive.cbo.enable=true;
hive> set hive.compute.query.using.stats=true;
hive> set hive.execution.engine=tez;
hive> set hive.auto.convert.join.noconditionaltask=false;
hive> set hive.auto.convert.join=true;
hive> set hive.vectorized.execution.enabled=true;
hive> set hive.vectorized.execution.reduce.enabled=true;
hive> set hive.vectorized.execution.mapjoin.native.enabled=true;
hive> set hive.vectorized.execution.mapjoin.native.fast.hashtable.enabled=true;
hive>
> explain
> with table1 as (
> select stack(5,1,2,3,4,5) as id
> ),
> table2 as
> (select t2.id
> from (select t2.id, dense_rank() over(order by id desc) rnk
> from (select stack(11,55,33,44,22,11,1,2,3,4,5,6) as id) t2
> )t2
> where t2.rnk<6
> )
> select t1.id, t1.id*t2.id
> from table1 t1
> cross join table2 t2;
Warning: Map Join MAPJOIN[19][bigTable=?] in task 'Map 1' is a cross product
OK
Plan not optimized by CBO.
Vertex dependency in root stage
Map 1 <- Reducer 3 (BROADCAST_EDGE)
Reducer 3 <- Map 2 (SIMPLE_EDGE)
Stage-0
Fetch Operator
limit:-1
Stage-1
Map 1
File Output Operator [FS_17]
compressed:false
Statistics:Num rows: 1 Data size: 26 Basic stats: COMPLETE Column stats: NONE
table:{"serde:":"org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe","input format:":"org.apache.hadoop.mapred.TextInputFormat","output format:":"org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat"}
Select Operator [SEL_16]
outputColumnNames:["_col0","_col1"]
Statistics:Num rows: 1 Data size: 26 Basic stats: COMPLETE Column stats: NONE
Map Join Operator [MAPJOIN_19]
| condition map:[{"":"Inner Join 0 to 1"}]
| HybridGraceHashJoin:true
| keys:{}
| outputColumnNames:["_col0","_col1"]
| Statistics:Num rows: 1 Data size: 26 Basic stats: COMPLETE Column stats: NONE
|<-Reducer 3 [BROADCAST_EDGE]
| Reduce Output Operator [RS_14]
| sort order:
| Statistics:Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: COMPLETE
| value expressions:_col0 (type: int)
| Select Operator [SEL_9]
| outputColumnNames:["_col0"]
| Statistics:Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: COMPLETE
| Filter Operator [FIL_18]
| predicate:(dense_rank_window_0 < 6) (type: boolean)
| Statistics:Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: COMPLETE
| PTF Operator [PTF_8]
| Function definitions:[{"Input definition":{"type:":"WINDOWING"}},{"partition by:":"0","name:":"windowingtablefunction","order by:":"_col0(DESC)"}]
| Statistics:Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: COMPLETE
| Select Operator [SEL_7]
| | outputColumnNames:["_col0"]
| | Statistics:Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: COMPLETE
| |<-Map 2 [SIMPLE_EDGE]
| Reduce Output Operator [RS_6]
| key expressions:0 (type: int), col0 (type: int)
| Map-reduce partition columns:0 (type: int)
| sort order:+-
| Statistics:Num rows: 1 Data size: 48 Basic stats: COMPLETE Column stats: COMPLETE
| UDTF Operator [UDTF_5]
| function name:stack
| Statistics:Num rows: 1 Data size: 48 Basic stats: COMPLETE Column stats: COMPLETE
| Select Operator [SEL_4]
| outputColumnNames:["_col0","_col1","_col2","_col3","_col4","_col5","_col6","_col7","_col8","_col9","_col10","_col11"]
| Statistics:Num rows: 1 Data size: 48 Basic stats: COMPLETE Column stats: COMPLETE
| TableScan [TS_3]
| alias:_dummy_table
| Statistics:Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: COMPLETE
|<-UDTF Operator [UDTF_2]
function name:stack
Statistics:Num rows: 1 Data size: 24 Basic stats: COMPLETE Column stats: COMPLETE
Select Operator [SEL_1]
outputColumnNames:["_col0","_col1","_col2","_col3","_col4","_col5"]
Statistics:Num rows: 1 Data size: 24 Basic stats: COMPLETE Column stats: COMPLETE
TableScan [TS_0]
alias:_dummy_table
Statistics:Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: COMPLETE
Time taken: 0.199 seconds, Fetched: 66 row(s)
只需将我的演示中的堆栈替换为表格即可。
关于hive - 如何避免 hive 中的交叉连接?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/53184889/